\qquad

Let's Get This Started!

Points, Lines, Planes, Rays, and Line Segments

Vocabulary

Write the term that best completes each statement.

1. A geometric figure created without using tools is $a(n)$ \qquad sketch
2. \qquad are two or more lines that are not in the same plane.
3. $A(n)$ \qquad is a location in space.
4. The points where a line segment begins and ends are the \qquad endpoints of a line segment
5. $A(n)$ \qquad is a straight continuous arrangement of an infinite number of points.
6. Two or more line segments of equal measure are \qquad congruent line segments .
7. You construct a geometric figure when you use only a compass and straightedge.
8. Points that are all located on the same line are \qquad collinear points .
9. $A(n)$ \qquad line segment is a portion of a line that includes two points and all of the collinear points between the two points.
10. A flat surface is $a(n)$ \qquad .
11. $A(n)$ \qquad is a portion of a line that begins with a single point and extends infinitely in one direction.
12. Two or more lines located in the same plane are \qquad coplanar lines
13. When you \qquad a geometric figure, you use tools such as a ruler, straightedge, compass, or protractor.

Lesson 1.1 Skills Practice

Problem Set

Identify the point(s), line(s), and plane(s) in each figure.

Points: A, B, and C
Lines: $\overleftrightarrow{A B}$ and $\overleftrightarrow{B C}$
Plane: m
2.

Points: X, Y, and Z
Lines: $\overleftrightarrow{X Y}$ and $\overleftrightarrow{X Z}$
Plane: a

Points: R, S, and Q
Lines: $\overleftrightarrow{Q R}$ and $\overleftrightarrow{Q S}$
Plane: p

Points: L, M, and N
Lines: $\overleftrightarrow{L M}, \overleftrightarrow{L N}$, and $\overleftrightarrow{M N}$
Plane: x

Name
Date

Draw a figure for each description. Label all points mentioned in the description.
5. Points R, S, and T are collinear such that point T is located halfway between points S and R.

6. Points A, D, and X are collinear such that point A is located halfway between points D and X.

7. Points A, B, and C are collinear such that point B is between points A and C and the distance between points A and B is twice the distance between points B and C.

8. Points F, G, and H are collinear such that point F is between points G and H and the distance between points F and G is one third the distance between points G and H.

Identify all examples of coplanar lines in each figure.

Lines m and p are coplanar.
Lines n and q are coplanar.

Lines a and b are coplanar.
Lines c and d are coplanar.

Lines x and z are coplanar.
Lines w and y are coplanar.

Identify all skew lines in each figure.
13.

Lines f and g are skew.
Lines f and h are skew.

Lines w and y are skew.
Lines x and y are skew.
12.

Lines p and t are coplanar.
Lines q and r are coplanar.
Lines s and u are coplanar.
14.

Lines a and c are skew.
Lines band care skew.

Lines $/$ and n are skew.
Lines m and n are skew.

Draw and label an example of each geometric figure.
17. $\overleftrightarrow{X Y}$

18. $\overline{C D}$

19. $\overline{P R}$

21. $\overleftrightarrow{H M}$

20. $\overleftrightarrow{F G}$

Lesson 1.1 Skills Practice

Use symbols to write the name of each geometric figure.
23.

24.

$\overline{R T}$
$\overrightarrow{A B}$
25.

26.

27.

.
28.
$\overleftrightarrow{M N}$
$\overrightarrow{C D}$

Use a ruler to measure each segment to the nearest centimeter. Then use symbols to express the measure of each segment.
29.

30.
A —— B
$A B=6$ centimeters or $m \overline{A B}=6$ centimeters
31. \qquad
$A B=3.5$ centimeters or $m \overline{A B}=3.5$ centimeters
32. A — B
$A B=5.2$ centimeters or $m \overline{A B}=5.2$ centimeters

Name
Date \qquad

Attack of the Clones

Translating and Constructing Line Segments

Vocabulary

Choose the term from the box that best completes each statement.

Distance Formula	transformation	pre-image
rigid motion	translation	arc
copying (duplicating) a line segment	image	

1. $A(n)$ \qquad is a transformation of points in space.
2. The new figure created from a translation is called the \qquad .
3. $A(n)$ \qquad is a part of a circle and can be thought of as the curve between two points on a circle.
4. $A(n)$ \qquad is the mapping, or movement, of all the points of a figure in a plane according to a common operation.
5. The \qquad Distance Formula can be used to calculate the distance between two points on a coordinate place.
6. In a translation, the original figure is called the \qquad .
7. $A(n)$ \qquad is a rigid motion that "slides" each point of a figure the same distance and direction.
8. A basic geometric construction called copying (or duplicating) a line segment can be used to translate a line segment when measurement is not possible.

Problem Set

Calculate the distance between each given pair of points. Round your answer to the nearest tenth, if necessary.

1. $(3,1)$ and $(6,5)$

$$
\begin{aligned}
& x_{1}=3, y_{1}=1, x_{2}=6, y_{2}=5 \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{(6-3)^{2}+(5-1)^{2}} \\
& d=\sqrt{3^{2}+4^{2}} \\
& d=\sqrt{9+16} \\
& d=\sqrt{25} \\
& d=5
\end{aligned}
$$

2. $(2,8)$ and $(4,3)$
$x_{1}=2, y_{1}=8, x_{2}=4, y_{2}=3$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{(4-2)^{2}+(3-8)^{2}}$
$d=\sqrt{2^{2}+(-5)^{2}}$
$d=\sqrt{4+25}$
$d=\sqrt{29}$
$d \approx 5.4$
3. $(-6,4)$ and $(5,-1)$
$x_{1}=-6, y_{1}=4, x_{2}=5, y_{2}=-1$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{[5-(-6)]^{2}+[(-1)-4]^{2}}$
$d=\sqrt{11^{2}+(-5)^{2}}$
$d=\sqrt{121+25}$
$d=\sqrt{146}$
$d \approx 12.1$
4. $(9,-2)$ and $(2,-9)$
$x_{1}=9, y_{1}=-2, x_{2}=2, y_{2}=-9$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{(2-9)^{2}+[(-9)-(-2)]^{2}}$
$d=\sqrt{(-7)^{2}+(-7)^{2}}$
$d=\sqrt{49+49}$
$d=\sqrt{98}$
$d \approx 9.9$
5. $(0,-6)$ and $(8,0)$

$$
\begin{aligned}
& x_{1}=0, y_{1}=-6, x_{2}=8, y_{2}=0 \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{(8-0)^{2}+[0-(-6)]^{2}} \\
& d=\sqrt{8^{2}+6^{2}} \\
& d=\sqrt{64+36} \\
& d=\sqrt{100} \\
& d=10
\end{aligned}
$$

6. $(-5,-8)$ and $(-2,-9)$
$x_{1}=-5, y_{1}=-8, x_{2}=-2, y_{2}=-9$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{[(-2)-(-5)]^{2}+[(-9)-(-8)]^{2}}$
$d=\sqrt{3^{2}+(-1)^{2}}$
$d=\sqrt{9+1}$
$d=\sqrt{10}$
$d \approx 3.2$

Name \qquad Date \qquad

Calculate the distance between each given pair of points on the coordinate plane. Round your answer to the nearest tenth, if necessary.
7.

$$
\begin{aligned}
& x_{1}=2, y_{1}=8, x_{2}=7, y_{2}=3 \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{(7-2)^{2}+(3-8)^{2}} \\
& d=\sqrt{5^{2}+(-5)^{2}} \\
& d=\sqrt{25+25} \\
& d=\sqrt{50} \\
& d \approx 7.1
\end{aligned}
$$

8.

$$
\begin{aligned}
& x_{1}=2, y_{1}=2, x_{2}=9, y_{2}=6 \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{(9-2)^{2}+(6-2)^{2}} \\
& d=\sqrt{7^{2}+4^{2}} \\
& d=\sqrt{49+16} \\
& d=\sqrt{65} \\
& d \approx 8.1
\end{aligned}
$$

9.

$x_{1}=4, y_{1}=-6, x_{2}=6, y_{2}=3$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{(6-4)^{2}+[3-(-6)]^{2}}$
$d=\sqrt{2^{2}+9^{2}}$
$d=\sqrt{4+81}$
$d=\sqrt{85}$
$d \approx 9.2$
$x_{1}=-8, y_{1}=9, x_{2}=4, y_{2}=4$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{[4-(-8)]^{2}+(4-9)^{2}}$
$d=\sqrt{12^{2}+(-5)^{2}}$
$d=\sqrt{144+25}$
$d=\sqrt{169}$
$d=13$

Name \qquad Date \qquad
11.

$$
\begin{aligned}
& x_{1}=-5, y_{1}=6, x_{2}=3, y_{2}=-4 \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{[3-(-5)]^{2}+(-4-6)^{2}} \\
& d=\sqrt{8^{2}+(-10)^{2}} \\
& d=\sqrt{64+100} \\
& d=\sqrt{164} \\
& d \approx 12.8
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=-9, y_{1}=-3, x_{2}=-3, y_{2}=-6 \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{[(-3)-(-9)]^{2}+[(-6)-(-3)]^{2}} \\
& d=\sqrt{6^{2}+(-3)^{2}} \\
& d=\sqrt{36+9} \\
& d=\sqrt{45} \\
& d \approx 6.7
\end{aligned}
$$

Translate each given line segment on the coordinate plane as described.
13. Translate $\overline{A B} 8$ units to the left.

15. Translate $\overline{E F} 7$ units to the right.

14. Translate $\overline{C D} 9$ units down.

16. Translate $\overline{G H} 12$ units up.

Name \qquad Date \qquad
17. Translate $\overline{J K} 12$ units down and 7 units to the left.

Construct each line segment described.
19. Duplicate $\overline{A B}$.

21. Duplicate $\overline{E F}$.

18. Translate $\overline{M N} 5$ units down and 10 units to the right.

20. Duplicate $\overline{C D}$.

22. Duplicate $\overline{G H}$.

Lesson 1.2 Skills Practice

23. Construct a line segment twice the length of $\overline{J K}$.

$\overline{J^{\prime} L^{\prime}}$ is twice the length of $\overline{J K}$.
24. Construct a line segment twice the length of $\overline{M N}$.

$\overline{M^{\prime} P^{\prime}}$ is twice the length of $\overline{M N}$.

Stuck in the Middle

Midpoints and Bisectors

Vocabulary

Match each definition to the corresponding term.

1. midpoint
c.
a. a line, line segment, or ray that divides a line segment into two line segments of equal measure
2. Midpoint Formula
d.
b. a basic geometric construction used to locate the midpoint of a line segment
3. segment bisector
a.
c. a point exactly halfway between the endpoints of a line segment
4. bisecting a line segment
b.
d. $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Problem Set

Determine the midpoint of a line segment with each set of given endpoints.

1. $(8,0)$ and $(4,6)$
$x_{1}=8, y_{1}=0$
$x_{2}=4, y_{2}=6$
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{8+4}{2}, \frac{0+6}{2}\right)$
$=\left(\frac{12}{2}, \frac{6}{2}\right)$
$=(6,3)$
2. $(3,8)$ and $(9,10)$

$$
\begin{aligned}
& x_{1}=3, y_{1}=8 \\
& x_{2}=9, y_{2}=10 \\
& \begin{aligned}
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =\left(\frac{3+9}{2}, \frac{8+10}{2}\right) \\
& =\left(\frac{12}{2}, \frac{18}{2}\right) \\
& =(6,9)
\end{aligned}
\end{aligned}
$$

3. $(-7,2)$ and $(3,6)$

$$
x_{1}=-7, y_{1}=2
$$

$$
x_{2}=3, y_{2}=6
$$

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{-7+3}{2}, \frac{2+6}{2}\right)
$$

$$
=\left(\frac{-4}{2}, \frac{8}{2}\right)
$$

$$
=(-2,4)
$$

4. $(6,-3)$ and $(-4,5)$
$x_{1}=6, y_{1}=-3$
$x_{2}=-4, y_{2}=5$
$\left.\left\lvert\, \frac{x_{1}+x_{2}}{2}\right., \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{6+(-4)}{2}, \frac{-3+5}{2}\right)$
$=\left|\frac{2}{2}, \frac{2}{2}\right|$
$=(1,1)$
5. (-10, -1) and $(0,4)$
$x_{1}=-10, y_{1}=-1$
$x_{2}=0, y_{2}=4$

$$
\begin{aligned}
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =\left(\frac{-10+0}{2}, \frac{-1+4}{2}\right) \\
& =\left(\frac{-10}{2}, \frac{3}{2}\right) \\
& =(-5,1.5)
\end{aligned}
$$

6. $(-2,7)$ and ($-8,-9$)
$x_{1}=-2, y_{1}=7$
$x_{2}=-8, y_{2}=-9$
$\left|\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right|=\left(\frac{-2+(-8)}{2}, \frac{7+(-9)}{2}\right)$
$=\left|\frac{-10}{2}, \frac{-2}{2}\right|$
$=(-5,-1)$

Determine the midpoint of the given line segment on each coordinate plane using the Midpoint Formula.
7.

$$
\begin{aligned}
& x_{1}=3, y_{1}=2 \\
& x_{2}=7, y_{2}=8 \\
&\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{3+7}{2}, \frac{2+8}{2}\right) \\
&=\left(\frac{10}{2}, \frac{10}{2}\right) \\
&=(5,5)
\end{aligned}
$$

8.

9.

$x_{1}=3, y_{1}=-5$
$x_{2}=5, y_{2}=7$

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{3+5}{2}, \frac{-5+7}{2}\right)
$$

$$
=\left(\frac{8}{2}, \frac{2}{2}\right)
$$

$$
=(4,1)
$$

$$
\begin{aligned}
& x_{1}=-9, y_{1}=4 \\
& x_{2}=7, y_{2}=8 \\
& \begin{aligned}
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =\left(\frac{-9+7}{2}, \frac{4+8}{2}\right) \\
& =\left(\frac{-2}{2}, \frac{12}{2}\right) \\
& =(-1,6)
\end{aligned}
\end{aligned}
$$

10.

11.

$$
\begin{aligned}
& x_{1}=-4, y_{1}=6 \\
& x_{2}=8, y_{2}=-2 \\
&\left.\left\lvert\, \frac{x_{1}+x_{2}}{2}\right., \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{-4+8}{2}, \frac{6+(-2)}{2}\right) \\
&=\left(\frac{4}{2}, \frac{4}{2}\right) \\
&=(2,2)
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=-10, y_{1}=-3 \\
& x_{2}=2, y_{2}=-8 \\
&\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{-10+2}{2}, \frac{-3+(-8)}{2}\right) \\
&=\left(\frac{-8}{2}, \frac{-11}{2}\right) \\
&=(-4,-5.5)
\end{aligned}
$$

Name \qquad Date \qquad
12.

$$
\begin{aligned}
& x_{1}=-4, y_{1}=-8 \\
& x_{2}=4, y_{2}=8 \\
& \begin{aligned}
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =\left(\frac{-4+4}{2}, \frac{-8+8}{2}\right) \\
& =\left(\frac{0}{2}, \frac{0}{2}\right) \\
& =(0,0)
\end{aligned}
\end{aligned}
$$

Locate the midpoint of each line segment using construction tools and label it point M.
13.

Lesson 1.3 Skills Practice

14.

15.

Name Date
16.

17.

LESSON 1.3 Skills Practice

18.

\qquad

What's Your Angle?
 Translating and Constructing Angles and Angle Bisectors

Vocabulary

Define each term in your own words.

1. angle

An angle is formed by two rays that share a common endpoint. The sides of the angle are represented by the two rays.
2. angle bisector

An angle bisector is a ray drawn through the vertex of an angle that divides the angle into two congruent angles.

Describe how to perform each construction in your own words.
3. copying or duplicating an angle

To copy $\angle A$, use a straightedge to draw a starter line and draw a point C on the line. Draw an arc with point A as its center that passes through both sides of $\angle A$. Using the same radius, draw a similar arc with center C that passes through the starter line. Label the points where the arc intersects the sides of $\angle A$ as points B and D. Label the point where the arc intersects the starter line as point E. Draw an arc with radius $B D$ and center E that intersects the arc which passes through the starter line. Label the intersection of these two arcs point F. Draw $\overline{C F}$. Now, $\angle F C E \cong \angle B A D$.
4. bisecting an angle

To bisect $\angle C$, draw an arc with center C that intersects both sides of the angle. Label the intersections A and B. Draw an arc with center A across the interior of the angle. Using the same radius, draw an arc with center B that intersects the previous arc and label the intersection D. Use a straightedge to draw $\overline{C D}$ which bisects $\angle C$.

Problem Set

Translate each given angle on the coordinate plane as described.

1. Translate $\angle A B C 9$ units to the left.

2. Translate $\angle G H J 10$ units to the right.

3. Translate $\angle D E F 12$ units down.

4. Translate $\angle K L M 13$ units up.

\qquad Date \qquad
5. Translate $\angle N P Q 8$ units to the left and 11 units down.

Construct each angle as described.
7. Copy $\angle B$.

$\angle C B D \cong \angle S R T$
6. Translate $\angle R S T 15$ units to the left and 9 units up.

8. Copy $\angle D$.

$\angle A D B \cong \angle S Q R$
9. Copy $\angle P$.

$\angle A P C \cong \angle U W B$
10. Copy $\angle Z$.

11. Construct an angle that is twice the measure of $\angle K$.

$\angle R B C$ is twice the measure of $\angle A K Q$.

Name
Date
12. Construct an angle that is twice the measure of $\angle M$.

Construct the angle bisector of each given angle.
13.
$\overline{P D}$ is the angle bisector of $\angle P$.
© Carnegie Learning

15.

$\angle G H J$ is twice the measure of $\angle B M D$.
14.
$\overline{B H}$ is the angle bisector of $\angle B$.
$\overline{X W}$ is the angle bisector of $\angle X$.
16.

$\overline{S M}$ is the angle bisector of $\angle S$.

Lesson 1.4 Skills Practice

17. Construct an angle that is one-fourth the measure of $\angle F$.

$\angle N F S$ and $\angle S F D$ are each one-fourth the measure of $\angle F$.
18. Construct an angle that is one-fourth the measure of $\angle X$.

$\angle B X R$ and $\angle R X Z$ are each one-fourth the measure of $\angle X$.

If You Build It . . .
 Constructing Perpendicular Lines, Parallel Lines, and Polygons

Problem Set

Construct a line perpendicular to each given line and through the given point.

1. Construct a line that is perpendicular to $\overleftrightarrow{C D}$ and passes through point T.

2. Construct a line that is perpendicular to $\overleftrightarrow{A B}$ and passes through point X.

LESSON 1.5 Skills Practice

3. Construct a line that is perpendicular to $\overleftrightarrow{R S}$ and passes through point W.

4. Construct a line that is perpendicular to $\overleftrightarrow{Y Z}$ and passes through point G.

5. Construct a line that is perpendicular to $\overleftrightarrow{M N}$ and passes through point J.

6. Construct a line that is perpendicular to $\overleftrightarrow{P Q}$ and passes through point R.

Lesson 1.5 Skills Practice

Construct a line parallel to each given line and through the given point.
7. Construct a line that is parallel to $\overleftrightarrow{A B}$ and passes through point C.

Line q is parallel to $\overleftrightarrow{A B}$.
8. Construct a line that is parallel to $\overleftrightarrow{D E}$ and passes through point F.

Line m is parallel to $\overleftrightarrow{D E}$.
9. Construct a line that is parallel to $\overleftrightarrow{G H}$ and passes through point J.

Line p is parallel to $\overleftrightarrow{G H}$.
10. Construct a line that is parallel to $\overleftrightarrow{K L}$ and passes through point M.

Line e is parallel to $\overleftrightarrow{K L}$.
11. Construct a line that is parallel to $\overleftrightarrow{N P}$ and passes through point Q.

Line a is parallel to $\overleftrightarrow{N P}$.
12. Construct a line that is parallel to $\overleftrightarrow{R T}$ and passes through point W.

Line n is parallel to $\overleftrightarrow{R T}$.

Name
Date

Construct each geometric figure.
13. Construct an equilateral triangle. The length of one side is given.

14. Construct an equilateral triangle. The length of one side is given.

15. Construct an isosceles triangle that is not an equilateral triangle such that each leg is longer than the base. The length of the base is given.

16. Construct an isosceles triangle that is not an equilateral triangle such that each leg is shorter than the base. The length of the base is given.

Name
Date \qquad
17. Construct a square. The perimeter of the square is given.

18. Construct a square. The perimeter of the square is given.

LeSSON 1.5 Skills Practice

19. Construct a rectangle that is not a square. The perimeter of the rectangle is given.

20. Construct a rectangle that is not a square. The perimeter of the rectangle is given.

What's the Point?
 Points of Concurrency

Vocabulary

Describe similarities and differences between each pair of terms.

1. concurrent and point of concurrency

Concurrent lines, rays, or line segments are three or more lines, rays, or line segments intersecting at a single point. The point of concurrency is the point at which they intersect.
2. incenter and orthocenter

Both the incenter and the orthocenter are points where three line segments of a triangle intersect, and each of the three segments connects a vertex to the side opposite the vertex. The incenter is the point where the three angle bisectors of the triangle are concurrent. The orthocenter is the point at which the three altitudes, or the lines containing the altitudes, of a triangle are concurrent.
3. centroid and circumcenter

Both the centroid and the circumcenter are points where bisectors of the sides of the triangle intersect. The centroid is the point at which the medians of the triangle are concurrent. The circumcenter is the point at which the three perpendicular bisectors of the sides of a triangle are concurrent.
4. altitude and median

Both the altitude and median are line segments that extend from a vertex to the opposite side of a triangle. The altitude is perpendicular to the side that it intersects, and the median intersects the side at its midpoint.

Problem Set

Draw the incenter of each triangle.
1.

2.

4.

5.

6.

7.

8.

Draw the circumcenter of each triangle.
9.

10.

Name Date \qquad
11.

12.

© Carnegie Learning
13.

15.

Draw the centroid of each triangle.

14.

16.

18.

19.

20.

22.

23.

24.

Draw the orthocenter of each triangle.

27.

28.

29.

30.

Name \qquad Date

32.

Answer each question about points of concurrency. Draw an example to illustrate your answer.
33. For which type of triangle are the incenter, circumcenter, centroid, and orthocenter the same point? equilateral triangles

34. For which type of triangle are the orthocenter and circumcenter outside of the triangle? obtuse triangles

35. For which type of triangle are the circumcenter and orthocenter on the triangle? right triangles

36. For which type of triangle are the incenter, circumcenter, centroid, and orthocenter all inside the triangle?
acute triangles

37. For what type(s) of triangle(s) do the centroid, circumcenter, and orthocenter all lie on a straight line?
all types of triangles

38. For what type of triangle is the orthocenter a vertex of the triangle? right triangles

Name \qquad Date \qquad

Given the coordinates of the vertices of a triangle, classify the triangle using algebra.
39. $A(-5,5), B(5,5), C(0,-5)$
segment $A B$
segment $A C$
segment $B C$
$d=\sqrt{[5-(-5)]^{2}+(5-5)^{2}}$
$d=\sqrt{[0-(-5)]^{2}+(-5-5)^{2}}$
$d=\sqrt{(0-5)^{2}+(-5-5)^{2}}$
$d=\sqrt{10^{2}+0^{2}}$
$d=\sqrt{5^{2}+(-10)^{2}}$
$d=\sqrt{(-5)^{2}+(-10)^{2}}$
$d=\sqrt{100}$
$d=\sqrt{125}$
$d=\sqrt{125}$
$d=10$
$d \approx 11.18$
$d \approx 11.18$

The lengths of two of the segments are equal, so the triangle is isosceles.
40. $R(-3,-1), S(1,2), T(4,-2)$
segment $R S$
$d=\sqrt{[1-(-3)]^{2}+[2-(-1)]^{2}}$
$d=\sqrt{4^{2}+3^{2}}$
$d=\sqrt{25}$
$d=5$
The lengths of two of the segments are equal, so the triangle is isosceles.
41. $F(-2,5), G(1,6), H(5,-4)$
segment $F G$ segment $F H$ segment $G H$
$d=\sqrt{[1-(-2)]^{2}+(6-5)^{2}}$
$d=\sqrt{3^{2}+1^{2}}$
$d=\sqrt{10}$
$d \approx 3.16$
$d=\sqrt{[5-(-2)]^{2}+(-4-5)^{2}}$
$d=\sqrt{(5-1)^{2}+(-4-6)^{2}}$
$d=\sqrt{(7)^{2}+(-9)^{2}}$
$d=\sqrt{(4)^{2}+(-10)^{2}}$
$d=\sqrt{130}$
$d=\sqrt{116}$

The lengths of the three segments are different, so the triangle is scalene.

Lesson 1.6 Skills Practice

42. $M(5,-1), N(3,-5), P(-1,-3)$
segment MN
$d=\sqrt{(3-5)^{2}+[-5-(-1)]^{2}}$
$d=\sqrt{(-2)^{2}+(-4)^{2}}$
$d=\sqrt{20}$
$d \approx 4.47$
segment $N P$
$d=\sqrt{(-1-3)^{2}+[-3-(-5)]^{2}}$
$d=\sqrt{(-4)^{2}+2^{2}}$
$d=\sqrt{20}$
$d \approx 4.47$
The lengths of two of the segments are equal, so the triangle is isosceles.
43. $K(-2,1), L(4,-3), M(-1,5)$
segment $K L$
$d=\sqrt{[4-(-2)]^{2}+(-3-1)^{2}}$
$d=\sqrt{6^{2}+(-4)^{2}}$
$d=\sqrt{[-1-(-2)]^{2}+(5-1)^{2}}$
$d=\sqrt{52}$
$d \approx 7.21$
$d=\sqrt{1^{2}+4^{2}}$
$d=\sqrt{17}$
$d \approx 4.12$
segment $L M$
$d=\sqrt{(-1-4)^{2}+[5-(-3)]^{2}}$
$d=\sqrt{(-5)^{2}+8^{2}}$
$d=\sqrt{89}$
$d \approx 9.43$
The lengths of the three segments are different, so the triangle is scalene.
44. $E(-5,7), F(3,4), G(-8,-1)$

segment $E F$

$d=\sqrt{[3-(-5)]^{2}+(4-7)^{2}}$
$d=\sqrt{8^{2}+(-3)^{2}}$
$d=\sqrt{73}$
$d \approx 8.54$
segment FG
$d=\sqrt{(-8-3)^{2}+(-1-4)^{2}}$
$d=\sqrt{(-11)^{2}+(-5)^{2}}$
$d=\sqrt{146}$
$d \approx 12.08$
The lengths of two of the segments are equal, so the triangle is isosceles.

