Lesson 6.1 Skills Practice

Name
Date \qquad

Time to Get Right
 Right Triangle Congruence Theorems

Vocabulary

Choose the diagram that models each right triangle congruence theorem.

1. Hypotenuse-Leg (HL) Congruence Theorem b

2. Leg-Leg (LL) Congruence Theorem d

a.

b.

3. Hypotenuse-Angle (HA) Congruence Theorem a
c.

4. Leg-Angle (LA) Congruence Theorem c
d.

Problem Set

Mark the appropriate sides to make each congruence statement true by the Hypotenuse-Leg Congruence Theorem.

1. $\triangle D P R \cong \triangle Q F M$

2. $\triangle A C I \cong \triangle G C E$

3. $\triangle Q T R \cong \triangle S R T$

4. $\triangle A D G \cong \triangle H K N$

Mark the appropriate sides to make each congruence statement true by the Leg-Leg Congruence Theorem.
5. $\triangle B Z N \cong \triangle T G C$

6. $\triangle M N O \cong \triangle Q P O$

6
7. $\triangle P Z T \cong \triangle P Z X$

8. $\triangle E G I \cong \triangle O N Q$

Name Date

Mark the appropriate sides and angles to make each congruence statement true by the Hypotenuse-Angle Congruence Theorem.
9. $\triangle S V M \cong \triangle J F W$

10. $\triangle M S N \cong \triangle Q R T$

11. $\triangle I E G \cong \triangle I E K$

12. $\triangle D C B \cong \triangle Z Y X$

Mark the appropriate sides and angles to make each congruence statement true by the Leg-Angle Congruence Theorem.
13. $\triangle X T D \cong \triangle H P R$

14. $\triangle S E C \cong \triangle P E C$

15. $\triangle P B J \cong \triangle O T N$

16. $\triangle A X T \cong \triangle Y B U$

For each figure, determine if there is enough information to prove that the two triangles are congruent. If so, name the congruence theorem used.
17. Given: $\overline{G F}$ bisects $\angle R G S$, and $\angle R$ and $\angle S$ are right angles.
Is $\triangle F R G \cong \triangle F S G$?

Yes. There is enough information to conclude that $\triangle F R G \cong \triangle F S G$ by HA.
19. Given: $\overline{N M} \cong \overline{E M}, \overline{D M} \cong \overline{O M}$, and $\angle N M D$ and $\angle E M O$ are right angles.
Is $\triangle N M D \cong \triangle E M O ?$

Yes. There is enough information to conclude that $\triangle N M D \cong \triangle E M O$ by $L L$.
18. Given: $\overline{D V} \perp \overline{T U}$

Is $\triangle D V T \cong \triangle D V U$?

No. $\triangle D V T$ might not be congruent to $\triangle D V U$. There is not enough information.
20. Given: $\overline{R P} \cong \overline{Q S}$, and $\angle R$ and $\angle Q$ are right angles.
Is $\triangle S R P \cong \triangle P Q S ?$

Yes. There is enough information to conclude that $\triangle S R P \cong \triangle P Q S$ by HL .
\qquad
21. Given: $\overline{G O} \cong \overline{M I}$, and $\angle E$ and $\angle K$ are right angles.
Is $\triangle G E O \cong \triangle M K I ?$

No. $\triangle G E O$ might not be congruent to $\triangle M K I$. There is not enough information.
22. Given: $\overline{H M} \cong \overline{V M}$, and $\angle H$ and $\angle V$ are right angles.
Is $\triangle G H M \cong \triangle U V M$?

Yes. There is enough information to conclude that $\triangle G H M \cong \triangle U V M$ by LA.

Use the given information to answer each question.
23. Two friends are meeting at the library. Maria leaves her house and walks north on Elm Street and then east on Main Street to reach the library. Paula leaves her house and walks south on Park Avenue and then west on Main Street to reach the library. Maria walks the same distance on Elm Street as Paula walks on Main Street, and she walks the same distance on Main Street as Paula walks on Park Avenue. Is there enough information to determine whether Maria's walking distance is the same as Paula's walking distance?

Yes. Maria's walking distance to the library is equal to Paula's walking distance. The triangles formed are right triangles. The corresponding legs of the triangles are congruent. So, by the Leg-Leg Congruence Theorem, the triangles are congruent. If the triangles are congruent, the hypotenuses are congruent.
24. An auto dealership displays one of their cars by driving it up a ramp onto a display platform. Later they will drive the car off the platform using a ramp on the opposite side. Both ramps form a right triangle with the ground and the platform. Is there enough information to determine whether the two ramps have the same length? Explain.

No. There is not enough information to determine whether the two ramps have the same length. The triangles formed by the ramps, the vertical sides of the platform, and the ground are right triangles. But, the lengths of the legs, the lengths of the hypotenuses, and the measures of the acute angles are unknown.
25. A radio station erected a new transmission antenna to provide its listeners with better reception. The antenna was built perpendicular to the ground, and to keep the antenna from swaying in the wind two guy wires were attached from it to the ground on opposite sides of the antenna. Is there enough information to determine if the guy wires have the same length? Explain.

No. There is not enough information to determine whether the guy wires have the same length. The triangles formed by the antenna, the guy wires, and the ground are right triangles. But, the lengths of the legs, the lengths of the hypotenuses, and the measures of the acute angles are unknown.
\qquad
26. Two ladders resting on level ground are leaning against the side of a house. The bottom of each ladder is exactly 2.5 feet directly out from the base of the house. The point at which each ladder rests against the house is 10 feet directly above the base of the house. Is there enough information to determine whether the two ladders have the same length? Explain.

Yes. The triangles formed by the ladders, the ground, and the side of the house are right triangles. Each leg of one triangle is congruent to the corresponding leg of the other triangle, making the two triangles congruent by LL. The ladders form the hypotenuses of the triangles. Since the triangles are congruent, the hypotenuses are congruent. Therefore, the ladders have the same length.

Create a two-column proof to prove each statement.
27. Given: $\overline{W Z}$ bisects $\overline{V Y}, \overline{W V} \perp \overline{V Y}$, and $\overline{Y Z} \perp \overline{V Y}$

Prove: $\triangle W V X \cong \triangle Z Y X$

Statements	Reasons
1. $\overline{W V} \perp \overline{V Y}$ and $\overline{Y Z} \perp \overline{W Y}$	1. Given
2. $\angle W V X$ and $\angle Z Y X$ are right angles.	2. Definition of perpendicular angles
3. $\triangle W V X$ and $\triangle Z Y X$ are right triangles.	3. Definition of right triangles
4. $\overline{W Z}$ bisects $\overline{V Y}$.	4. Given
5. $\overline{V X} \cong \overline{Y X}$	5. Definition of segment bisector
6. $\angle W X V \cong \angle Z X Y$	6. Vertical Angle Theorem
7. $\triangle W V X \cong \triangle Z Y X$	7. LA Congruence Theorem

28. Given: Point D is the midpoint of $\overline{E C}$, $\triangle A D B$ is an isosceles triangle with base $\overline{A B}$, and $\angle E$ and $\angle C$ are right angles.
Prove: $\triangle A E D \cong \triangle B C D$

Reasons

1. Given
2. Definition of right triangles
3. Given
4. Definition of midpoint
5. Given
6. Definition of isosceles triangle
7. HL Congruence Theorem
8. Given: $\overline{S U} \perp \overline{U P}, \overline{T P} \perp \overline{U P}$, and $\overline{U R} \cong \overline{P R}$

Prove: $\triangle S U R \cong \triangle T P R$

Statements

1. $\overline{S U} \perp \overline{U P}$ and $\overline{T P} \perp \overline{U P}$
2. $\angle U$ and $\angle P$ are right angles.
3. $\triangle S U R$ and $\triangle T P R$ are right triangles.
4. $\overline{U R} \cong \overline{P R}$
5. $\angle P R T$ and $\angle U R S$ are vertical angles.
6. $\angle P R T \cong \angle U R S$
7. $\triangle S U R \cong \triangle T P R$

Reasons

1. Given
2. Definition of perpendicular lines
3. Definition of right triangles
4. Given
5. Definition of vertical angles
6. Vertical Angle Theorem
7. LA Congruence Theorem

Name Date
30. Given: Rectangle $M N W X$ and $\angle N M W \cong \angle X W M$

Prove: $\triangle M N W \cong \triangle W X M$

Statements
Reasons

1. $M N W X$ is a rectangle
2. $\angle N$ and $\angle X$ are right angles.
3. $\triangle M N W$ and $\triangle W X M$ are right triangles.
4. $M W=W M$
5. $\overline{M W} \cong \overline{W M}$
6. $\angle N M W \cong \angle X W M$
7. $\triangle M N W \cong \triangle W X M$
8. Given
9. Definition of rectangle
10. Definition of right triangles
11. Reflexive Property of Equality
12. Definition of congruent segments
13. Given
14. HA Congruence Theorem

CPCTC

Corresponding Parts of Congruent Triangles are Congruent

Vocabulary

Provide an example to illustrate each term.

1. Corresponding parts of congruent triangles are congruent (CPCTC)

Examples will vary.
Given: $\triangle A F H \cong \triangle P S T$
The corresponding congruent parts are:

$\angle A \cong \angle P, \angle F \cong \angle S, \angle H \cong \angle T$,
$\overline{A F} \cong \overline{P S}, \overline{F H} \cong \overline{S T}, \overline{H A} \cong \overline{T P}$
2. Isosceles Triangle Base Angle Theorem

Examples will vary.
Given: $\triangle F N D$ with $\overline{F N} \cong \overline{F D}$
The Isosceles Triangle Base Angle
Theorem states that $\angle N \cong \angle D$.

3. Isosceles Triangle Base Angle Converse Theorem

Examples will vary.
Given: $\triangle R C Q$ with $\angle R \cong \angle C$
The Isosceles Triangle Base Angle
Converse Theorem states that $\overline{Q C} \cong \overline{Q R}$.

LESSON 6.2 Skills Practice

Problem Set

Create a two-column proof to prove each statement.

1. Given: $\overline{R S}$ is the \perp bisector of $\overline{P Q}$.

Prove: $\angle S P T \cong \angle S Q T$

Statements
Reasons

1. $\overline{R S}$ is the \perp bisector of $\overline{P Q}$.
2. $\overline{R S} \perp \overline{P Q}$
3. $\angle P T S$ and $\angle Q T S$ are right angles.
4. $\triangle P T S$ and $\triangle Q T S$ are right triangles.
5. $\overline{R S}$ bisects $\overline{P Q}$
6. $\overline{P T} \cong \overline{Q T}$
7. $\overline{T S} \cong \overline{T S}$
8. $\triangle P T S \cong \triangle Q T S$
9. $\angle S P T \cong \angle S Q T$
10. Given: $\overline{T Z} \cong \overline{W X}, \overline{T M} \cong \overline{W T}$, and $\overline{T Z} \| \overline{W X}$

Prove: $\overline{M Z} \cong \overline{T X}$

1. Given
2. Definition of perpendicular bisector
3. Definition of perpendicular lines
4. Definition of right triangles
5. Definition of perpendicular bisector
6. Definition of bisect
7. Reflexive Property of \cong
8. Leg-Leg Congruence Theorem
9. СРСTC

Statements

Reasons

1. $\overline{T Z} \cong \overline{W X}$
2. $\overline{T M} \cong \overline{W T}$
3. $\overline{T Z} \| \overline{W X}$
4. $\angle M T Z$ and $\angle T W X$ are corresponding angles.
5. $\angle M T Z \cong \angle T W X$
6. $\triangle M T Z \cong \triangle T W X$
7. $\overline{M Z} \cong \overline{T X}$
8. Given
9. Given
10. Given
11. Definition of corresponding angles
12. Corresponding Angles Postulate
13. SAS Congruence Theorem
14. СРСТС

Name
Date \qquad
3. Given: $\overline{A G}$ and $\overline{E K}$ intersect at C,
$\overline{A C} \cong \overline{E C}, \overline{C K} \cong \overline{C G}$
Prove: $\angle K \cong \angle G$

Statements
Reasons

1. $\overline{A G}$ and $\overline{E K}$ intersect at C
2. $\overline{A C} \cong \overline{E C}$
3. $\overline{C K} \cong \overline{C G}$
4. $\angle A C K \cong \angle E C G$
5. $\triangle A C K \cong \triangle E C G$
6. $\angle K \cong \angle G$
7. Given
8. Given
9. Given
10. Vertical Angles Theorem
11. SAS Congruence Theorem
12. CPCTC
13. Given: $\angle J H K \cong \angle L H K, \angle J K H \cong \angle L K H$

Prove: $\overline{J K} \cong \overline{L K}$

Statements
Reasons

5. Given: $\triangle U G T \cong \triangle S G B$

Prove: $\angle T U S \cong \angle B S U$

Statements

1. $\triangle U G T \cong \triangle S G B$
2. $\overline{T U} \cong \overline{B S}$
3. $\overline{S G} \cong \overline{U G}$
4. $\overline{G T} \cong \overline{G B}$
5. $S G=U G$
6. $G T=G B$
7. $S G+G T=U G+G B$
8. $S G+G T=S T$
9. $U G+G B=U B$
10. $S T=U B$
11. $\overline{S T} \cong \overline{U B}$
12. $\angle S T U \cong \angle U B S$
13. $\triangle S T U \cong \triangle U B S$
14. $\angle T U S \cong \angle B S U$
15. Given
16. СРСTC
17. СРСТС
18. СРСТС
19. Definition of congruent segments
20. Definition of congruent segments
21. Addition Property of Equality
22. Segment Addition Postulate
23. Segment Addition Postulate
24. Substitution Property
25. Definition of congruent segments
26. CPCTC
27. SAS Congruence Theorem
28. СРСТС
29. Given: $\angle T P N \cong \angle T N P, \overline{T P} \cong \overline{Q P}$

Prove: $\overline{T N} \cong \overline{Q P}$

Statements

1. $\angle T P N \cong \angle T N P$
2. $\overline{T N} \cong \overline{T P}$
3. $\overline{T P} \cong \overline{Q P}$
4. $\overline{T N} \cong \overline{Q P}$

Reasons

1. Given
2. Base Angle Converse Theorem
3. Given
4. Transitive Property of \cong
5. Given: $\overline{A C} \perp \overline{D B}, \overline{A C}$ bisects $\overline{D B}$

Prove: $\overline{A D} \cong \overline{A B}$

Statements

1. $\overline{A C} \perp \overline{D B}$
2. $\angle D E A$ is a right angle.
3. $\angle B E A$ is a right angle.
4. $\triangle D E A$ is a right triangle.
5. $\triangle B E A$ is a right triangle.
6. $\overline{A C}$ bisects $\overline{D B}$
7. $\overline{D E} \cong \overline{B E}$
8. $\overline{A E} \cong \overline{A E}$
9. $\triangle D E A \cong \triangle B E A$
10. $\overline{A D} \cong \overline{A B}$
11. Given
12. Definition of perpendicular lines
13. Definition of perpendicular lines
14. Definition of right triangle
15. Definition of right triangle
16. Given
17. Definition of bisect
18. Reflexive Property of \cong
19. Leg-Leg Congruence Theorem
20. СРСТС
21. Given: $\angle K G H \cong \angle K H G, \overline{F G} \cong \overline{J H}, \overline{F K} \cong \overline{J K}$

Prove: $\angle F \cong \angle J$

Statements
1. $\angle K G H \cong \angle K H G$
2. $\overline{G K} \cong \overline{H K}$
3. $\overline{F G} \cong \overline{J H}$
4. $\overline{F K} \cong \overline{J K}$
5. $\triangle F G K \cong \triangle J H K$
6. $\angle F \cong \angle J$

Lesson 6.2 Skills Practice

9. Given: $\overline{A T} \cong \overline{A Q}, \overline{A C}$ bisects $\angle T A Q$

Prove: $\overline{A C}$ bisects $\overline{T Q}$

Statements
Reasons

1. $\overline{A T} \cong \overline{A Q}$
2. Given
3. $\angle T \cong \angle Q$
4. Base Angle Theorem
5. $\overline{A C}$ bisects $\angle T A Q$
6. $\angle T A C \cong \angle Q A C$
7. $\triangle T A C \cong \triangle Q A C$
8. Given
9. Definition of bisect
10. ASA Congruence Theorem
11. $\overline{T C} \cong \overline{Q C}$
12. $\overline{A C}$ bisects $\overline{T Q}$
13. CPCTC
14. Definition of bisect
15. Given: $\overline{E L} \cong \overline{E I}, \angle L N J \cong I G J, J$ is the midpoint of $\overline{L I}$ Prove: $\overline{N J} \cong \overline{G J}$

Statements
Reasons

1. $\overline{E L} \cong \overline{E I}$
2. $\angle E L J \cong \angle E I J$
3. J is the midpoint of $\overline{L I}$.
4. $\overline{L J} \cong \overline{I J}$
5. $\angle L N J \cong \angle I G J$
6. $\triangle L N J \cong \triangle I G J$
7. $\overline{N J} \cong \overline{G J}$
8. Given
9. Base Angle Theorem
10. Given
11. Definition of midpoint
12. Given
13. AAS Congruence Theorem
14. CPCTC

Name \qquad Date \qquad
11. Given: $\angle E \cong \angle E U V, \angle F \cong \angle F V U$

Prove: $\overline{U F} \cong \overline{V E}$

Statements
Reasons

1. $\angle E \cong \angle E U V$
2. $\overline{V U} \cong \overline{V E}$
3. $\angle F \cong \angle F V U$
4. $\overline{U F} \cong \overline{V U}$
5. $\overline{U F} \cong \overline{V E}$
6. Given
7. Base Angle Converse Theorem
8. Given
9. Base Angle Converse Theorem
10. Transitive Property of \cong
11. Given: $\overline{C T} \cong \overline{C P}, \overline{A T} \cong \overline{A P}$

Prove: $m \angle C T A=m \angle C P A$

Reasons

Statements
1. $\overline{C T} \cong \overline{C P}$
2. $\angle C T P \cong \angle C P T$
3. $m \angle C T P=m \angle C P T$
4. $\overline{A T} \cong \overline{A P}$
5. $\angle A T P \cong \angle A P T$
6. $m \angle A T P=m \angle A P T$
7. $m \angle C T P=m \angle C T A+m \angle A T P$
8. $m \angle C P T=m \angle C P A+m \angle A P T$
9. $m \angle C T A+m \angle A T P=$
$m \angle C P A+m \angle A P T$
10. $m \angle C T A=m \angle C P A$

Use the given information to answer each question.
13. Samantha is hiking through the forest and she comes upon a canyon. She wants to know how wide the canyon is. She measures the distance between points A and B to be 35 feet. Then, she measures the distance between points B and C to be 35 feet. Finally, she measures the distance between points C and D to be 80 feet. How wide is the canyon? Explain.

The canyon is 80 feet wide.
The triangles are congruent by the Leg-Angle Congruence Theorem. Corresponding parts of congruent triangles are congruent, so $\overline{C D}=\overline{A E}$.
14. Explain why $m \angle N M O=20^{\circ}$.

Using $\triangle Q M N$ and the Base Angle Theorem, $m \angle M N O=60^{\circ}$. Using $\triangle P M O$ and the Base Angle Theorem, $m \angle P O M=80^{\circ}$. Since $\angle P O M$ and $\angle M O N$ are supplementary, $m \angle M O N=100^{\circ}$. Since the sum of the measures of the angles in a triangle is $180^{\circ}, m \angle N M O=20^{\circ}$.
15. Calculate $M R$ given that the perimeter of $\triangle H M R$ is 60 centimeters.

$M R=20 \mathrm{~cm}$. Using the Base Angle Converse Theorem, MR $=H R$. Solve the perimeter equation $x+x+20=60$, where $x=M R$ and $x=H R$. So, $x=20$.

Name
Date \qquad
16. Greta has a summer home on Lake Winnie. Using the diagram, how wide is Lake Winnie?

Lake Winnie is 80 feet wide. The triangles are congruent by the Hypotenuse-Leg Congruence Theorem and corresponding parts of congruent triangles are congruent, so the width of Lake Winnie is equal to the length of the 48 meter leg of the triangle that is displayed below the lake.
17. Jill is building a livestock pen in the shape of a triangle. She is using one side of a barn for one of the sides of her pen and has already placed posts in the ground at points A, B, and C, as shown in the diagram. If she places fence posts every 10 feet, how many more posts does she need? Note: There will be no other posts placed along the barn wall.

Eight posts are needed to complete the fence. Using the Base Angle Converse Theorem, I know the length of side $A C$ is equal to the length of side $B C$. She will need four more posts for side $A C$ and four more posts for side $B C$.
18. Given rectangle $A C D E$, calculate the measure of $\angle C D B$.

The measure of $m \angle C D B=60^{\circ}$. Using the Base Angle Theorem, $m \angle B D E=30^{\circ}$. Since
$A C D E$ is a rectangle, $m \angle C D E=90^{\circ}$. So $m \angle C D B=m \angle C D E-m \angle B D E=90^{\circ}-30^{\circ}=60^{\circ}$.

Congruence Theorems in Action Isosceles Triangle Theorems

Vocabulary

Choose the term from the box that best completes each sentence.

Isosceles Triangle Altitude to Congruent	Isosceles Triangle Base Theorem
Sides Theorem	vertex angle
Isosceles Triangle Vertex Angle Theorem	Isosceles Triangle Angle Bisector to Congruent
Isosceles Triangle Perpendicular Bisector	Sides Theorem
Theorem	

1. $A(n)$ \qquad vertex angle is the angle formed by the two congruent legs in an isosceles triangle.
2. In an isosceles triangle, the altitudes to the congruent sides are congruent, as stated in the \qquad Isosceles Triangle Altitude to Congruent Sides Theorem .
3. In an isosceles triangle, the angle bisectors to the congruent sides are congruent, as stated in the Isosceles Triangle Angle Bisector to Congruent Sides Theorem .
4. The \qquad Isosceles Triangle Perpendicular Bisector Theorem \qquad states that the altitude from the vertex angle of an isosceles triangle is the perpendicular bisector of the base.
5. The \qquad Isosceles Triangle Base Theorem states that the altitude to the base of an isosceles triangle bisects the base.
6. The altitude to the base of an isosceles triangle bisects the vertex angle, as stated in the

Problem Set

Write the theorem that justifies the truth of each statement.

1. In isosceles $\triangle M R G, \overline{R D} \cong \overline{G C}$.

Isosceles Triangle Angle Bisector to Congruent Sides Theorem
3. In isosceles $\triangle B R U$ with altitude $\overline{B D}$, $\overline{U D} \cong \overline{R D}$.

Isosceles Triangle Base Theorem
2. In isosceles $\triangle T G C$ with altitude $\overline{T P}$, $\overline{T P} \perp \overline{G C}$, and $\overline{G P} \cong \overline{C P}$.

Isosceles Triangle Perpendicular Bisector Theorem
4. In isosceles $\triangle J F /$ with altitude $\overline{J H}$, $\angle H J F \cong \angle H J I$.

Isosceles Triangle Vertex
Angle Theorem
5. In isosceles $\triangle M N O, \overline{O A} \cong N B$.

Isosceles Triangle Altitude to
Congruent Sides Theorem
6. In isosceles $\triangle H J K, \overline{K N}$ bisects $\angle H K J$, $\overline{J M}$ bisects $\angle H J K$, and $\overline{M J} \cong \overline{N K}$.

Name
Date \qquad

Determine the value of x in each isosceles triangle.
7.

$$
x=32^{\circ}
$$

8.

$x=24 \mathrm{~m}$
9.

10.

$$
x=13 \mathrm{ft}
$$

$x=8 \mathrm{~m}$
11.

$x=10 \mathrm{~cm}$
12.

$$
x=37^{\circ}
$$

Lesson 6.3 Skills Practice

Complete each two-column proof.
13. Given: Isosceles $\triangle A B C$ with $\overline{A B} \cong \overline{C B}$, $\overline{B D} \perp \overline{A C}, \overline{D E} \perp \overline{A B}$, and $\overline{D F} \perp \overline{C B}$
Prove: $\overline{E D} \cong \overline{F D}$

Statements
Reasons

1. $\overline{A B} \cong \overline{C B}$
2. $\overline{B D} \perp \overline{A C}, \overline{D E} \perp \overline{A B}, \overline{D F} \perp \bar{C} \bar{B}$
3. $\angle A E D$ and $\angle C F D$ are right angles.
4. $\triangle A E D$ and $\triangle C F D$ are right triangles.
5. $\angle A \cong \angle C$
6. $\overline{A D} \cong \overline{C D}$
7. $\triangle A E D \cong \triangle C F D$
8. $\overline{E D} \cong \overline{F D}$
9. Given
10. Given
11. Definition of perpendicular lines
12. Definition of right triangle
13. Base Angle Theorem
14. Isosceles Triangle Base Theorem
15. HA Congruence Theorem
16. CPCTC
\qquad
17. Given: Isosceles $\triangle M N B$ with $\overline{M N} \cong \overline{M B}$, $\overline{N O}$ bisects $\angle A N B, \overline{B A}$ bisects $\angle O B N$
Prove: $\triangle B A N \cong \triangle N O B$
18. $\overline{M N} \cong \overline{M B}$
19. $\angle O B N \cong \angle A N B$
20. $\overline{N O}$ bisects $\angle A N B, \overline{B A}$ bisects $\angle O B N$
21. $\angle O B A \cong \angle A B N, \angle A N O \cong \angle O N B$
22. $m \angle O B N=m \angle A N B$
23. $m \angle O B A=m \angle A B N$,
$m \angle A N O=m \angle O N B$
24. $m \angle O B N=m \angle O B A+m \angle A B N$
25. $m \angle A N B=m \angle A N O+m \angle O N B$
26. $m \angle O B A+m \angle A B N=$
$m \angle A N O+m \angle O N B$
27. $m \angle A B N+m \angle A B N=$
$m \angle O N B+m \angle O N B$
28. $2(m \angle A B N)=2(m \angle O N B)$
29. $m \angle A B N=m \angle O N B$
30. $\angle A B N \cong \angle O N B$
31. $\overline{B N} \cong \overline{B N}$
32. $\overline{B A} \cong \overline{N O}$
33. $\triangle B A N \cong \triangle N O B$

Reasons

1. Given
2. Base Angle Theorem
3. Given
4. Definition of angle bisector
5. Definition of congruent angles
6. Definition of congruent angles
7. Angle Addition Postulate
8. Angle Addition Postulate
9. Substitution Property
10. Substitution Property
11. Factoring
12. Division Property of Equality
13. Definition of congruent angles
14. Reflexive Property of \cong
15. Isos. Triangle Angle Bisector to Congruent Sides Theorem
16. SAS Congruence Theorem

Lesson 6.3 Skills Practice

15. Given: Isosceles $\triangle I A E$ with $\overline{A A} \cong \bar{I}, \overline{A G} \perp \overline{I E}, \overline{E K} \perp \overline{I A}$

Prove: $\triangle I G A \cong \triangle I K E$

Statements
Reasons

1. $\overline{I A} \cong \overline{I E}$
2. $\overline{A G} \perp \overline{I E}, \overline{E K} \perp \bar{A}$
3. $\angle I G A$ and $\angle I K E$ are right angles.
4. $\triangle I G A$ and $\triangle I K E$ are right triangles.
5. $\overline{A G} \cong \overline{E K}$
6. $\triangle I G A \cong \triangle I K E$
7. Given: Isosceles $\triangle G Q R$ with $\overline{G R} \cong \overline{G Q}$, Isosceles $\triangle Q G H$ with $\overline{G Q} \cong \overline{Q H}$, $\overline{G J} \perp \overline{Q R}, \overline{Q P} \perp \overline{G H}$, and $\overline{G J} \| \overline{Q P}$
Prove: $\overline{R J} \cong \overline{H P}$
8. Given
9. Given
10. Definition of perpendicular lines
11. Definition of right triangle
12. Isos. Triangle Altitude to Congruent Sides Theorem
13. HL Congruence Theorem

Reasons

1. Given
2. $\overline{G R} \cong \overline{G Q}, \overline{G Q} \cong \overline{Q H}$
3. Given
4. Given
5. Transitive Property of \cong
6. Definition of perpendicular lines
7. Definition of right triangle
8. Isos. Triangle Vertex Angle Theorem
9. Alternate Interior Angle Theorem
10. Substitution Property of \cong
11. HA Congruence Theorem
12. СРСТС

Name
Date \qquad

Use the given information to answer each question.
17. The front of an A -frame house is in the shape of an isosceles triangle, as shown in the diagram. In the diagram, $\overline{H K} \perp \overline{G J}, \overline{G H} \cong \overline{J H}$, and $m \angle H G J=68.5^{\circ}$. Use this information to determine the measure of $\angle G H J$. Explain.

The measure of $\angle G H J$ is 43°.
By the Triangle Sum Theorem, $m \angle G H K=180^{\circ}-\left(90^{\circ}+68.5^{\circ}\right)=21.5^{\circ}$.
By the Isosceles Triangle Vertex Angle Theorem, $m \angle G H K=m \angle J H K$.
Therefore, $m \angle G H J=21.5^{\circ}+21.5^{\circ}=43^{\circ}$.
18. When building a house, rafters are used to support the roof. The rafter shown in the diagram has the shape of an isosceles triangle. In the diagram, $\overline{N P} \perp \overline{R Q}, \overline{N R} \cong \overline{N Q}, N P=12$ feet, and $R P=16$ feet. Use this information to determine the length of $\overline{N Q}$. Explain.

The length of $\overline{N Q}$ is 20 feet.
By the Isosceles Triangle Perpendicular Bisector Theorem, $\overline{R P}$ and $\overline{Q P}$ have the same length. Using the Pythagorean Theorem with $N P=12$ feet and $Q P=16$ feet:

$$
\begin{aligned}
(N P)^{2}+(Q P)^{2} & =(N Q)^{2} \\
12^{2}+16^{2} & =(N Q)^{2} \\
400 & =(N Q)^{2} \\
20 & =N Q
\end{aligned}
$$

19. Stained glass windows are constructed using different pieces of colored glass held together by lead. The stained glass window in the diagram is rectangular with six different colored glass pieces represented by $\triangle T B S, \triangle P B S, \triangle P B Q, \triangle Q B R, \triangle N B R$, and $\triangle N B T$. Triangle $T B P$ with altitude $\overline{S B}$ and $\triangle Q B N$ with altitude $\overrightarrow{R B}$, are congruent isosceles triangles. If the measure of $\angle N B R$ is 20°, what is the measure of $\angle S T B$? Explain.

The measure of $\angle S T B$ is 70°.
Since $\triangle T B P$ and $\triangle Q B N$ are congruent isosceles triangles, $\angle T B P \cong \angle Q B N$. Altitudes $\overline{S B}$ and $\overline{R B}$ each bisect the vertex angle of the triangle, creating four congruent angles. In $\triangle S T B$, the measure of $\angle T S B$ is 90°. By CPCTC, the measure of $\angle S B T$ is 20°. By the Triangle Sum Theorem, $m \angle S T B=180^{\circ}-\left(90^{\circ}+20^{\circ}\right)=70^{\circ}$.
20. While growing up, Nikki often camped out in her back yard in a pup tent. A pup tent has two rectangular sides made of canvas, and a front and back in the shape of two isosceles triangles also made of canvas. The zipper in front, represented by $\overline{M G}$ in the diagram, is the height of the pup tent and the altitude of isosceles $\triangle E M H$. If the length of $\overline{E G}$ is 2.5 feet, what is the length of $\overline{H G}$? Explain.

The length of $\overline{H G}$ is 2.5 feet.
Since $\overline{M G}$ is the altitude of isosceles $\triangle E M H$, by the Isosceles Triangle Perpendicular Bisector Theorem, $\overline{E G} \cong \overline{H G}$. Therefore $H G=2.5$ feet.

Name Date
21. A beaded purse is in the shape of an isosceles triangle. In the diagram, $\overline{T N} \cong \overline{T V}, \overline{V M} \perp \overline{T N}$, and $\overline{N U} \perp \overline{T V}$. How long is the line of beads represented by $\overline{N U}$, if $T V$ is 13 inches and $T M$ is 5 inches? Explain.

By the Isosceles Triangle Altitude to Congruent Sides Theorem, $\overline{N U}$ and $\overline{V M}$ have the same length. The line of beads represented by $\overline{N U}$ is 12 inches long.

Using the Pythagorean Theorem with $T V=13$ inches and $T M=5$ inches:

$$
\begin{aligned}
(V M)^{2}+(T M)^{2} & =(T V)^{2} \\
(V M)^{2}+5^{2} & =13^{2} \\
(V M)^{2}+25 & =169 \\
(V M)^{2} & =144 \\
V M & =12
\end{aligned}
$$

22. A kaleidoscope is a cylinder with mirrors inside and an assortment of loose colored beads. When a person looks through the kaleidoscope, different colored shapes and patterns are created as the kaleidoscope is rotated. Suppose that the diagram represents the shapes that a person sees when they look into the kaleidoscope. Triangle $A E I$ is an isosceles triangle with $\overline{A E} \cong \overline{A I} . \overline{E K}$ bisects $\angle A E I$ and $\overline{I C}$ bisects $\angle A I E$. What is the length of $\overline{C C}$, if one half the length of $\overline{E K}$ is 14 centimeters? Explain.

The length of $\overline{I C}$ is 28 centimeters.
By the Isosceles Triangle Angle Bisector to Congruent Sides Theorem, \bar{C} and $\overline{E K}$ are congruent. Since half the length of $\overline{E K}$ is 14 centimeters, its full length is 28 centimeters. Therefore, the length of $\overline{E K}$ is 28 centimeters. So, the length of $\overline{I C}$ is 28 centimeters.

Making Some Assumptions
 Inverse, Contrapositive, Direct Proof, and Indirect Proof

Vocabulary

Define each term in your own words.

1. inverse

The inverse of the conditional statement "If p, then q," is the statement "If not p, then not q."
2. contrapositive

The contrapositive of the conditional statement "If p, then q," is the statement "If not q, then not p."
3. direct proof

A direct proof is a proof that begins with the given information and works to the desired conclusion directly through the use of givens, definitions, properties, postulates, and theorems.
4. indirect proof (or proof by contradiction)

An indirect proof, or proof by contradiction, is a proof that uses the contrapositive. If you prove the contrapositive true, then the statement is true.
5. Hinge Theorem

If two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first pair is larger than the included angle of the second pair, then the third side of the first triangle is longer than the third side of the second triangle.
6. Hinge Converse Theorem

If two sides of one triangle are congruent to two sides of another triangle, and the third side of the first triangle is longer than the third side of the second triangle, then the included angle of the first pair of sides is larger than the included angle of the second pair of sides.

Lesson 6.4 Skills Practice

Problem Set

Write the converse of each conditional statement. Then, determine whether the converse is true.

1. If two lines do not intersect and are not parallel, then they are skew lines.

The converse of the conditional would be:
If two lines are skew lines, then they do not intersect and are not parallel.
The converse is true.
2. If two lines are coplanar and do not intersect, then they are parallel lines.

The converse of the conditional would be:
If two lines are parallel lines, then they are coplanar and do not intersect.
The converse is true.
3. If a triangle has one angle whose measure is greater than 90°, then the triangle is obtuse.

The converse of the conditional would be:
If a triangle is obtuse, then the measure of one of its angles is greater than 90°.
The converse is true.
4. If a triangle has two sides with equal lengths, then it is an isosceles triangle.

The converse of the conditional would be:
If a triangle is an isosceles triangle, then it has two sides with equal lengths.
The converse is true.
5. If the lengths of the sides of a triangle measure $5 \mathrm{~mm}, 12 \mathrm{~mm}$, and 13 mm , then it is a right triangle.

The converse of the conditional would be:
If a triangle is a right triangle, then the lengths of its sides are $5 \mathrm{~mm}, 12 \mathrm{~mm}$, and 13 mm .
The converse is not true.
\qquad
6. If the lengths of the sides of a triangle are $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm , then the triangle is a right triangle.

The converse of the conditional would be:
If a triangle is a right triangle, then the lengths of its sides are $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm .
The converse is not true.
7. If the corresponding sides of two triangles are congruent, then the triangles are congruent.

The converse of the conditional would be:
If two triangles are congruent, then the corresponding sides of the two triangles are congruent.
The converse is true.
8. If the corresponding angles of two triangles are congruent, then the triangles are similar.

The converse of the conditional would be:
If two triangles are similar, then the corresponding angles of the two triangles are congruent.
The converse is true.

Write the inverse of each conditional statement. Then, determine whether the inverse is true.
9. If a triangle is an equilateral triangle, then it is an isosceles triangle.

The inverse of the conditional would be:
If a triangle is not an equilateral triangle, then it is not an isosceles triangle.
The inverse is not true.
10. If a triangle is a right triangle, then the sum of the measures of its acute angles is 90°.

The inverse of the conditional would be:
If a triangle is not a right triangle, then the sum of the measures of its acute angles is not 90°.
The inverse is true.
11. If the sum of the internal angles of a polygon is 180°, then the polygon is a triangle.

The inverse of the conditional would be:
If the sum of the internal angles of a polygon is not 180°, then the polygon is not a triangle.
The inverse is true.
12. If a polygon is a triangle, then the sum of its exterior angles is 360°.

The inverse of the conditional would be:
If a polygon is not a triangle, then the sum of its exterior angles is not 360°.
The inverse is not true.
13. If two angles are the acute angles of a right triangle, then they are complementary.

The inverse of the conditional would be:
If two angles are not the acute angles of a right triangle, then they are not complementary.
The inverse is not true.
14. If two angles are complementary, then the sum of their measures is 90°.

The inverse of the conditional would be:
If two angles are not complementary, then the sum of their measures is not 90°.
The inverse is true.
15. If a polygon is a square, then it is a rhombus.

The inverse of the conditional would be:
If a polygon is not a square, then it is not a rhombus.
The inverse is not true.
16. If a polygon is a trapezoid, then it is a quadrilateral.

The inverse of the conditional would be:
If a polygon is not a trapezoid, then it is not a quadrilateral.
The inverse is not true.

Write the contrapositive of each conditional statement. Then, determine whether the contrapositive is true.
17. If one of the acute angles of a right triangle measures 45°, then it is an isosceles right triangle.

The contrapositive of the conditional would be:
If a triangle is not an isosceles right triangle, then it is not a right triangle with an acute angle that measures 45°.

The contrapositive is true.
18. If one of the acute angles of a right triangle measures 30°, then it is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.

The contrapositive of the conditional would be:
If a triangle is not a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, then it is not a right triangle with an acute angle that measures 30°.

The contrapositive is true.
19. If a quadrilateral is a rectangle, then it is a parallelogram.

The contrapositive of the conditional would be:
If a quadrilateral is not a parallelogram, then it is not a rectangle.
The contrapositive is true.
20. If a quadrilateral is an isosceles trapezoid, then it has two pairs of congruent base angles.

The contrapositive of the conditional would be:
If a quadrilateral does not have two pairs of congruent base angles, then it is not an isosceles trapezoid.

The contrapositive is true.

Lesson 6.4 Skills Practice

21. If the sum of the measures of two angles is 180°, then the angles are supplementary.

The contrapositive of the conditional would be:
If two angles are not supplementary, then the sum of their measures is not 180°.
The contrapositive is true.
22. If two angles are supplementary, then the sum of their measures is 180°.

The contrapositive of the conditional would be:
If the sum of the measures of two angles is not 180°, then the angles are not supplementary.
The contrapositive is true.
23. If the radius of a circle is 8 meters, then the diameter of the circle is 16 meters.

The contrapositive of the conditional would be:
If the diameter of a circle is not 16 meters, then the radius of the circle is not 8 meters.
The contrapositive is true.
24. If the diameter of a circle is 12 inches, then the radius of the circle is 6 inches.

The contrapositive of the conditional would be:
If the radius of a circle is not 6 inches, then the diameter of the circle is not 12 inches.
The contrapositive is true.

Name Date

Create an indirect proof to prove each statement.
25. Given: $\overline{W Y}$ bisects $\angle X Y Z$ and $\overline{X W} \equiv \overline{Z W}$

Prove: $\overline{X Y} \neq \overline{Z Y}$

Statements
Reasons

1. $\overline{X Y} \cong \overline{Z Y}$
2. $\overline{W Y}$ bisects $\angle X Y Z$
3. $\angle X Y W \cong \angle Z Y W$
4. $\overline{Y W} \cong \overline{Y W}$
5. $\triangle X Y W \cong \triangle Z Y W$
6. $\overline{X W} \cong \overline{Z W}$
7. $\overline{X W} \not \equiv \overline{Z W}$
8. $\overline{X Y} \cong \overline{Z Y}$ is false.
9. $\overline{X Y} \not \equiv \overline{Z Y}$ is true.
10. Assumption
11. Given
12. Definition of angle bisector
13. Reflexive Property of \cong
14. SAS Congruence Theorem
15. CPCTC
16. Given
17. Step 7 contradicts Step 6. The assumption is false.
18. Proof by contradiction
19. Given: $m \angle E B X \neq m \angle E B Z$

Prove: $\overline{E B}$ is not an altitude of $\triangle E Z X$.

Statements

1. $\overline{E B}$ is an altitude of $\triangle E Z X$.
2. $\angle E B X$ and $\angle E B Z$ are right angles.
3. $\angle E B X \cong \angle E B Z$
4. $m \angle E B X=m \angle E B Z$
5. $m \angle E B X \neq m \angle E B Z$
6. $\overline{E B}$ is an altitude of $\triangle E Z X$ is false.
7. $\overline{E B}$ is not an altitude of $\triangle E Z X$ is true.

Reasons

1. Assumption
2. Definition of altitude
3. Right Angles Congruence Theorem
4. Definition of congruent angles
5. Given
6. Step 5 contradicts Step 4. The assumption is false.
7. Proof by contradiction

LESSON 6.4 Skills Practice

27. Given: $\angle \mathrm{OMP} \cong \angle M O P$ and $\overline{N P}$ does not bisect $\angle O N M$. Prove: $\overline{N M} \equiv \overline{N O}$

Statements
Reasons

1. $\overline{N M} \cong \overline{N O}$
2. $\angle O M P \cong \angle M O P$
3. $\overline{N P}$ does not bisect $\angle O N M$.
4. $\overline{M P} \cong \overline{\mathrm{OP}}$
5. $\overline{P N} \cong \overline{P N}$
6. $\triangle O N P \cong \triangle M N P$
7. $\angle O N P \cong \angle M N P$
8. $\overline{N P}$ bisects $\angle O N M$.
9. $\overline{N M} \cong \overline{N O}$ is false.
10. $\overline{N M} \not \equiv \overline{N O}$ is true.
11. Given: $\overline{E T} \cong \overline{D T}$ and $\overline{E U} \not \equiv \overline{D U}$

Prove: $\overline{E X} \not \equiv \overline{D X}$

Paragraph Proof:

You are given that $\overline{E T} \cong \overline{D T}$ and $\overline{E U} \not \equiv \overline{D U}$. Begin by assuming that $\overline{E X} \cong \overline{D X}$. By the Reflexive Property of Congruence, $\overline{T X} \cong \overline{T X}$ and $\overline{U X} \cong \overline{U X}$. By the SSS Congruence Theorem, $\triangle E T X$ $\cong \triangle D T X$. By CPCTC, $\angle E X T \cong \angle D X T$. By the Vertical Angles Theorem, $\angle E X T \cong \angle D X U$ and $\angle T X D \cong \angle E X U$. Using the Transitivity Property of Congruence, $\triangle E X U \cong \triangle D X U$. By the SAS Congruence Theorem, $\triangle E X U \cong \triangle D X U$. As a result, CPCTC justifies the conclusion that $\overline{E U} \cong \overline{D U}$, which contradicts the given information ($\overline{E U} \not \equiv \overline{D U}$), so the assumption is false. Therefore, by contradiction, $\overline{E X} \not \equiv \overline{D X}$.

Name Date

For each pair of triangles, use the Hinge Theorem or its converse to write a conclusion using an inequality,

$$
S P>G Q
$$

31. P

$m \angle E>m \angle T$
32.

$$
A D>R Q
$$

32.

$m \angle Z>m \angle I$

