Squares and Rectangles
 Properties of Squares and Rectangles

Vocabulary

Define the term in your own words.

1. Explain the Perpendicular/Parallel Line Theorem in your own words.

The Perpendicular/Parallel Line Theorem states that if two lines are perpendicular to the same line, then the two lines are parallel to each other.

Problem Set

Use the given statements and the Perpendicular/Parallel Line Theorem to identify the pair of parallel lines in each figure.

1. Given: $/ \perp m$ and $/ \perp r$

$m \| r$
2. Given: $z \perp g$ and $z \perp p$
© Carnegie Learning
3. $k \perp b$ and $g \perp b$

$k \| g$
4. Given: $c \perp t$ and $t \perp e$

$c \| e$
5. Given: $n \perp r$ and $r \perp q$

$n \| q$
6. Given: $b \perp x$ and $k \perp b$

$x \| k$

Complete each statement for square GKJH.

7. $\overline{G K} \cong \overline{K J} \cong \overline{J H} \cong \overline{H G}$
8. $\angle K G H \cong \angle \underline{G H J} \cong \angle \underline{H J K} \cong \angle \underline{J K G} \cong \angle \underline{G E K} \cong \angle \underline{G E H} \cong \angle \underline{H E J} \cong \angle \underline{J E K}$
9. $\angle G E K, \angle \underline{K G H}, \angle \underline{G H J}, \angle \underline{H J K}, \angle \underline{J K G}, \angle \underline{G E H}, \angle \underline{H E G}$, and $\angle \underline{J E K}$ are right angles.
10. $\overline{G K} \| \underline{\overline{H J}}$ and $\overline{G H} \| \overline{K J}$
11. $\overline{G E} \cong \overline{J E} \cong \overline{H E} \cong \overline{K E}$
12. $\angle \underline{K G E} \cong \angle \underline{E G H} \cong \angle \underline{G H E} \cong \angle \underline{E H J} \cong \angle \underline{H J E} \cong \angle \underline{E J K} \cong \angle \underline{J K E} \cong \angle \underline{E K G}$

Name Date

Complete each statement for rectangle TMNU.

13. $\overline{M N} \cong \overline{T U}$ and $\overline{M T} \cong \overline{N U}$
14. $\angle N M T \cong \angle \underline{T U N} \cong \angle \underline{U N M} \cong \angle M T U$
15. $\angle M T U, \angle \underline{T U N}, \angle \underline{U N M}$, and $\angle \underline{N M T}$ are right angles.
16. $\overline{M N} \| \overline{T U}$ and $\overline{M T} \| \overline{N U}$
17. $\overline{M U} \cong \overline{N T}$
18. $\overline{M L} \cong \overline{U L} \cong \overline{T L} \cong \overline{T U}$

Construct each quadrilateral using the given information.
19. Use $\overline{A B}$ to construct square $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at point E.

20. Use $\overline{W X}$ to construct square $W X Y Z$ with diagonals $\overline{W Y}$ and $\overline{X Z}$ intersecting at point P.
$w^{\bullet} \quad X$

21. Use $\overline{O P}$ to construct square $O P Q R$ with diagonals $\overline{O Q}$ and $\overline{P R}$ intersecting at point T.

Name Date
22. Use $\overline{R E}$ to construct rectangle $R E C T$ with diagonals $\overline{R C}$ and $\overline{E T}$ intersecting at point A. Do not construct a square.

23. Use $\overline{Q R}$ to construct rectangle $Q R S T$ with diagonals $\overline{Q S}$ and $\overline{R T}$ intersecting at point P. Do not construct a square.

24. Use $\overline{M N}$ to construct rectangle $M N O P$ with diagonals $\overline{M O}$ and $\overline{N P}$ intersecting at point G. Do not construct a square.

Create each proof.
25. Write a paragraph proof to prove $\overline{A C} \cong \overline{B D}$ in square $A B C D$.

You are given square $A B C D$ with diagonals $\overline{A C}$ and $\overline{D B}$. By definition of a square, $\angle A D C$ and $\angle B C D$ are right angles. Because all right angles are congruent, you can conclude that $\angle A D C \cong \angle B C D$. Also by definition of a square, $\overline{A D} \cong \overline{B C}$. By the Reflexive Property, $\overline{D C} \cong \overline{D C}$.
Therefore, $\triangle A D C \cong \triangle B C D$ by the SAS Congruence Theorem. So, $\overline{A C} \cong \overline{B D}$ by CPCTC.

Name Date \qquad
26. Write a paragraph proof to prove $\overline{G L} \cong \overline{I L}$ and $\overline{H L} \cong \overline{J L}$ in square $G H I J$.

You are given square $G H I J$ with diagonals $\overline{G l}$ and $\overline{J H}$ intersecting at point L. By definition of a square, $\overline{G H} \cong \overline{J I}$. Also, $\overline{G H} \| \overline{J I}$, because opposite sides of a square are parallel. Because $\angle H G I$ and $\angle G I J$ are alternate interior angles to the parallel lines, it can be determined that $\angle H G I \cong \angle G I J$ by the Alternate Interior Angle Theorem. It also follows that $\angle G L H$ and $\angle J L I$ are vertical angles, so $\angle G L H \cong \angle J L I$ by the Vertical Angle Theorem. Therefore, $\triangle G H L \cong \triangle I J L$ by the AAS Congruence Theorem. So, $\overline{G L} \cong \overline{I L}$ and $\overline{H L} \cong \overline{J L}$ by СРСТС.
27. Create a two-column proof to prove $\overline{M L} \perp \overline{N P}$ in square $M N L P$.

Statements

1. Square MNLP with diagonals $\overline{M L}$ and $\overline{N P}$ intersecting at point Q
2. $\overline{M N} \cong \overline{P M}$
3. $\overline{P Q} \cong \overline{Q N}$
4. $\overline{M Q} \cong \overline{M Q}$
5. $\triangle P M Q \cong \triangle N M Q$
6. $\angle P Q M$ and $\angle N Q M$ are supplementary.
7. $\angle P Q M \cong \angle M Q N$
8. $\angle P Q M$ and $\angle M Q N$ are right angles.
9. $\overline{M L} \perp \overline{N P}$

Reasons

1. Given
2. Definition of a square
3. Diagonals of a square bisect each other
4. Reflexive Property
5. SSS Congruence Theorem
6. Definition of Linear Pair
7. CPCTC
8. If two angles are supplementary and congruent, then they are right angles.
9. Definition of perpendicular lines
10. Create a two-column proof to prove $\overline{R T} \cong \overline{S U}$ in rectangle RSTU.

Statements
Reasons

1. Rect RSTU with diagonals $\overline{U S}$ and $\overline{R T}$ intersecting at point V
2. $\angle R U T$ and $\angle S T U$ are right angles.
3. $\angle R U T \cong \angle S T U$
4. $\overline{U T} \cong \overline{U T}$
5. $\overline{R U} \cong \overline{S T}$
6. $\triangle U R T \cong \triangle T S U$
7. $\overline{R T} \cong \overline{S U}$
8. Given
9. Definition of a rectangle
10. All right angles are congruent.
11. Reflexive Property
12. Opposite sides of a rectangle are congruent
13. SAS Congruence Theorem
14. CPCTC

Name \qquad Date \qquad
29. Create a two-column proof to prove $\overline{L K} \cong \overline{K N}$ and $\overline{O K} \cong \overline{K M}$ in rectangle $L M N O$.

Statements

Reasons

1. Rect $L M N O$ with diagonals $\overline{L N}$ and $\overline{O M}$ intersecting at point K
2. $\overline{L O} \cong \overline{M N}$
3. $\angle L K O \cong \angle M K N$
4. $\overline{L M}$ perpendicular to $\overline{L O}$ and
$\overline{L O}$ perpendicular to $\overline{O N}$
5. $\overline{L O}$ parallel to $\overline{M N}$
6. $\angle O L N \cong \angle M N L$ $\angle L O M \cong \angle N M O$
7. $\triangle O L K \cong \triangle M N K$
8. $\overline{L K} \cong \overline{N K}$
$\overline{O K} \cong \overline{M K}$
9. Given
10. Opposite sides of a rectangle are
congruent.
11. Vertical Angle Theorem
12. Definition of perpendicular lines
13. Perpendicular/Parallel Line Theorem
14. Alternate Interior Angle Theorem
15. AAS Congruence Theorem
16. CPCTC
17. Opposite sides of a rectangle are congruent.
18. Vertical Angle Theorem
19. Definition of perpendicular lines
20. Perpendicular/Parallel Line Theorem
21. Alternate Interior Angle Theorem
22. AAS Congruence Theorem
23. CPCTC
24. Write a paragraph proof to prove opposite sides are parallel in rectangle $W X Y Z$.

You are given rectangle $W X Y Z$. By definition of a rectangle, $\angle Z W X, \angle W X Y, \angle X Y Z$, and $\angle Y Z W$ are right angles. By definition of perpendicular lines, it follows that $\overline{W X} \perp \overline{X Y}, \overline{X Y} \perp \overline{Z Y}, \overline{Z Y} \perp \overline{W Z}$, and $\overline{W Z} \perp \overline{W X}$. Therefore, by the Perpendicular/Parallel Line Theorem, $\overline{W X} \| \overline{Z Y}$ and $\overline{W Z} \| \overline{X Y}$, or opposite sides of the rectangle are parallel.

Parallelograms and Rhombi

Properties of Parallelograms and Rhombi

Vocabulary

1. Explain how the Parallelogram/Congruent-Parallel Side Theorem can be used to determine if a quadrilateral is a parallelogram.
If a quadrilateral has one pair of opposite sides congruent and parallel then the Parallelogram/ Congruent-Parallel Side Theorem states that the quadrilateral is a parallelogram.

Problem Set

Complete each statement for parallelogram MNPL.

1. $\overline{M N} \cong \overline{L P}$ and $\overline{M L} \cong \overline{N P}$
2. $\angle N M L \cong \angle \underline{L P N}$ and $\angle M L P \cong \angle M N P$
3. $\overline{M N} \| \underline{\overline{L P}}$ and $\overline{M L} \| \underline{\overline{N P}}$
4. $\overline{M R} \cong \underline{\overline{R P}}$ and $\overline{L R} \cong \underline{\overline{R N}}$

Lesson 7.2 Skills Practice

Complete each statement for rhombus UVWX.

5. $\overline{U V} \cong \overline{V W} \cong \overline{W X} \cong \overline{X U}$
6. $\angle U V W \cong \angle \underline{U X W}$ and $\angle X U V \cong \angle V W X$
7. $\overline{U V} \| \overline{X W}$ and $\overline{U X} \| \overline{\overline{W W}}$
8. $\overline{U E} \cong \overline{E W}$ and $\overline{X E} \cong \overline{E V}$

Construct each quadrilateral using the given information.
9. Use $\overline{R S}$ to construct parallelogram RSTU with diagonals $\overline{R T}$ and $\overline{S U}$ intersecting at point G.

Name Date
10. Use $\overline{A B}$ to construct parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at point F.

11. Use $\overline{W X}$ to construct parallelogram $W X Y Z$ with diagonals $\overline{W Y}$ and $\overline{X Z}$ intersecting at point H.

12. Use $\overline{A B}$ to construct rhombus $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at point K. Do not construct a square.

Lesson 7.2 Skills Practice

13. Use $\overline{W X}$ to construct rhombus $W X Y Z$ with diagonals $\overline{W Y}$ and $\overline{X Z}$ intersecting at point V. Do not construct a square.

14. Use $\overline{E F}$ to construct rhombus $E F G H$ with diagonals $\overline{E G}$ and $\overline{F H}$ intersecting at point T. Do not construct a square.

Determine the missing statement needed to prove each quadrilateral is a parallelogram by the Parallelogram/Congruent-Parallel Side Theorem.
15. $\overline{X Y} \| \overline{Z W}$

$\overline{X Y} \cong \overline{Z W}$
16. $\overline{P S} \cong \overline{Q R}$

$\overline{P S} \| \overline{Q R}$

Name \qquad Date
17. $\overline{M N} \cong \overline{P Q}$

$$
\overline{M N} \| \overline{P Q}
$$

19. $\overline{S T} \| \overline{V U}$

$\overline{S T} \cong \overline{V U}$
20. $\overline{C F} \| \overline{D E}$

$$
\overline{C F} \cong \overline{D E}
$$

20. $\overline{K G} \cong \overline{H L}$

$\overline{K G} \| \overline{H L}$

Create each proof.
21. Write a paragraph proof to prove $\angle B A D \cong \angle D C B$ in parallelogram $A B C D$.

We are given parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{D B}$. By definition of a parallelogram, $\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{B C}$. So, $\angle A B D \cong \angle C D B$ and $\angle A D B \cong \angle D B C$ by the Alternate Interior Angle Theorem. By the Reflexive Property, $\overline{D B} \cong \overline{D B}$. Therefore, $\triangle A B D \cong \triangle C D B$ by the ASA Congruence Theorem. So, $\angle B A D \cong \angle D C B$ by CPCTC.
22. Create a two-column proof to prove $\overline{G L} \cong \bar{L}$ and $\overline{J L} \cong \overline{H L}$ in parallelogram $G H I J$.

Statements

1. Parallelogram GHIJ with diagonals $\overline{\mathrm{Gl}}$ and $\overline{H J}$ intersecting at point L
2. $\overline{G H} \| \overline{J I}$ and $\overline{G J} \| \overline{H I}$
3. $\angle H G I \cong \angle G I J$ and $\angle G H J \cong \angle H J I$
4. $\overline{\mathrm{GH}} \cong \bar{J}$
5. $\triangle H G L \cong \triangle J I L$
6. $\overline{G L} \cong \overline{I L}$ and $\overline{J L} \cong \overline{H L}$

Reasons

1. Given
2. Definition of a parallelogram
3. Alternate Interior Angles Theorem
4. Opposite sides of a parallelogram are congruent.
5. ASA Congruence Theorem
6. CPCTC
7. Write a paragraph proof to prove opposite sides are congruent in parallelogram HIJK.

We are given parallelogram HIJK with diagonals $\overline{H J}$ and $\overline{K I}$. By definition of a parallelogram, $\overline{H I} \| \overline{K J}$ and $\overline{H K} \| \overline{I J}$. By the Alternate Interior Angle Theorem, $\angle J H K \cong \angle H J I$ and $\angle I H J \cong \angle H J K$. By the Reflexive Property, $\overline{H J} \cong \overline{H J}$. Therefore, $\triangle K H J \cong \triangle I J H$ by the Angle Side Angle Congruence Theorem. It follows that $\overline{H I} \cong \overline{K J}$ and $\overline{H K} \cong \overline{I J}$ by CPCTC, or opposite sides of the parallelogram are congruent.

Name Date
24. Create a two-column proof to prove $\overline{R T} \perp \overline{S U}$ in rhombus $R S T U$.

Statements

1. Rhombus RSTU with diagonals $\overline{R T}$ and $\overline{S U}$ intersecting at point M.
2. $\overline{R S} \cong \overline{R U}$
3. $\overline{U M} \cong \overline{S M}$
4. $\overline{R M} \cong \overline{R M}$
5. $\triangle R M U \cong \triangle R M S$
6. $\angle R M U$ and $\angle R M S$ are supplementary.
7. $\angle R M U \cong \angle R M S$
8. $\angle R M U$ and $\angle R M S$ are right angles.
9. $\overline{R T} \perp \overline{S U}$

Reasons

1. Given
2. Definition of a rhombus
3. Diagonals of a rhombus bisect each other
4. Reflexive Property
5. SSS Congruence Theorem
6. Definition of Linear Pair
7. CPCTC
8. If two angles are supplementary and congruent then they are right angles.
9. Definition of perpendicular
10. Create a two-column proof to prove $\angle Q P R \cong \angle S P R, \angle Q R P \cong \angle S R P, \angle P S Q \cong \angle R S Q$, and $\angle P Q S \cong \angle R Q S$ in rhombus $P Q R S$.

Statements
Reasons

1. Rhombus PQRS with diagonals $\overline{P R}$ and $\overline{S Q}$ intersecting at point A
2. $\overline{P Q} \cong \overline{Q R} \cong \overline{R S} \cong \overline{S P}$
3. $\overline{P R} \cong \overline{P R}$
4. $\triangle P Q R \cong \triangle P S R$
5. $\overline{Q S} \cong \overline{Q S}$
6. $\triangle Q P S \cong \triangle Q R S$
7. $\angle Q P R \cong \angle S P R, \angle Q R P \cong \angle S R P$, $\angle P S Q \cong \angle R S Q$, and $\angle P Q S \cong \angle R Q S$
8. Given
9. Definition of a rhombus
10. Reflexive Property
11. SSS Congruence Theorem
12. Reflexive Property
13. SSS Congruence Theorem
14. CPCTC
\qquad
15. Create a two-column proof to prove rhombus RSTU is a parallelogram.

Statements

1. Rhombus RSTU with diagonals $\overline{R T}$ and $\overline{S U}$
2. $\overline{R S} \cong \overline{S T} \cong \overline{T U} \cong \overline{U R}$
3. $\overline{T R} \cong \overline{T R}$
4. $\triangle R U T \cong \triangle T S R$
5. $\angle S R T \cong \angle U T R$
6. $\overline{R S} \| \overline{U T}$
7. RSTU is a parallelogram.

Reasons

1. Given
2. Definition of a rhombus
3. Reflexive Property
4. SSS Congruence Theorem
5. CPCTC
6. Alternate Interior Angle Converse Theorem
7. Parallelogram/Congruent-Parallel Side Theorem

Use the given information to answer each question.
27. Tommy drew a quadrilateral. He used a protractor to measure all four angles of the quadrilateral. How many pairs of angles must be congruent for the quadrilateral to be a parallelogram? Explain.
Opposite angles are congruent in a parallelogram, so both pairs of opposite angles must be congruent.
28. Khyree cut a quadrilateral out of a piece of cardstock, but is not sure if the figure is a parallelogram or a rhombus. He measures the lengths of the opposite sides and determines them to be congruent. He measures the opposite angles of the quadrilateral and determines them also to be congruent. He measures one angle and is able to determine that the quadrilateral is a rhombus. What angle did he measure? Explain.

Khyree must have measured the angle that is formed by the diagonals. If that angle is a right angle then the quadrilateral must be a rhombus.
29. Penny makes the following statement: "Every rhombus is a parallelogram." Do you agree? Explain. All rhombi have the properties of a parallelogram, so every rhombus must be a parallelogram. Penny is correct.
30. Sally plans to make the base of her sculpture in the shape of a rhombus. She cuts out four pieces of wood to create a mold for concrete. The pieces of wood are the following lengths: 5 inches, 5 inches, 3 inches, and 3 inches. Will the base of Sally's sculpture be a rhombus? Explain.
No. A rhombus has four congruent sides. If Sally makes the base of her sculpture with the four pieces of wood she has cut, all four sides of the quadrilateral will not be the same length.
31. Ronald has a picture in the shape of a quadrilateral that he cut out of a magazine. How could Ronald use a ruler to prove that the picture is a parallelogram?
He could measure the lengths of the four sides of the quadrilateral. If opposite sides are the same length then the quadrilateral is a parallelogram.
32. Three angles of a parallelogram have the following measures: $58^{\circ}, 122^{\circ}$, and 58°. What is the measure of the fourth angle? How do you know?
Opposite angles are congruent in a parallelogram. Because there is already one pair of angles that each measure 58°, the other pair of angles must each measure 122°. The measure of the fourth angle is 122°.

Kites and Trapezoids

Properties of Kites and Trapezoids

Vocabulary

Write the term from the box that best completes each statement.

base angles of a trapezoid midsegment	biconditional statement isosceles trapezoid

1. The base angles of a trapezoid are either pair of angles of a trapezoid that share a base as a common side.
2. $A(n)$ \qquad isosceles trapezoid is a trapezoid with congruent non-parallel sides.
3. $A(n)$ \qquad biconditional statement is a statement that contains if and only if.
4. The \qquad of a trapezoid is a segment formed by connecting the midpoints of the legs of the trapezoid.

Problem Set

Complete each statement for kite PRSQ.

1. $\overline{P Q} \cong \overline{Q S}$ and $\overline{P R} \cong \overline{S R}$
2. $\angle Q P R \cong \angle Q S R$
3. $\overline{P T} \cong \overline{S T}$

4. $\angle P Q T \cong \angle \underline{T Q S}$ and $\angle P R T \cong \angle \underline{T R S}$

Lesson 7.3 Skills Practice

Complete each statement for trapezoid UVWX.
5. The bases are $\overline{U V}$ and $\overline{W X}$.
6. The pairs of base angles are $\angle \underline{V U X}$ and $\angle \underline{W V U}$, and $\angle \underline{U X W}$ and $\angle \underline{X W V}$.
7. The legs are $\overline{U X}$ and $\overline{\overline{V W}}$.

8. The vertices are V, U, X, and W.

Construct each quadrilateral using the given information.
9. Construct kite $Q R S T$ with diagonals $\overline{Q S}$ and $\overline{R T}$ intersecting at point M.

Name Date
10. Construct kite $L M N O$ with diagonals $\overline{M O}$ and $\overline{L N}$ intersecting at point A.

11. Construct kite UVWX with diagonals $\overline{U W}$ and $\overline{X V}$ intersecting at point K.

12. Construct trapezoid $A B C D$ with $\overline{A B}$ as a base.

13. Construct trapezoid $H G Y U$ with $\overline{H G}$ as a base.

14. Construct trapezoid $B N J I$ with $\overline{B N}$ as a base.

Name Date

Use the given figure to answer each question.
15. The figure shown is a kite with $\angle D A B \cong \angle D C B$. Which sides of the kite are congruent?

$\overline{A B}$ and $\overline{C B}$ are congruent.
$\overline{A D}$ and $\overline{C D}$ are congruent.
16. The figure shown is a kite with $\overline{F G} \cong \overline{F E}$. Which of the kite's angles are congruent?

$\angle E$ and $\angle G$ are congruent.
17. Given that $/ J L K$ is a kite, what kind of triangles are formed by diagonal \bar{L} ?

Triangle $I K L$ and triangle $I J L$ are both isosceles triangles.
18. Given that $L M N O$ is a kite, what is the relationship between the triangles formed by diagonal $\overline{M O}$?

Triangles MNO and MLO are congruent.
19. Given that $P Q R S$ is a kite, which angles are congruent?

$\angle Q P S$ and $\angle Q R S$ are congruent.
$\angle R Q S$ and $\angle P Q S$ are congruent.
$\angle R S Q$ and $\angle P S Q$ are congruent.
20. Given that TUVW is a kite, which angles are congruent?

$\angle U T V$ and $\angle U V T$ are congruent.
$\angle W T V$ and $\angle W V T$ are congruent.
$\angle U T W$ and $\angle U V W$ are congruent.

Name
Date

Use the given figure to answer each question.
21. The figure shown is an isosceles trapezoid with $\overline{A B} \| \overline{C D}$. Which sides are congruent?

$\overline{A C}$ and $\overline{B D}$ are congruent.
22. The figure shown is an isosceles trapezoid with $\overline{E H} \cong \overline{F G}$. Which sides are parallel?

$\overline{E F}$ and $\overline{H G}$ are parallel.
23. The figure shown is an isosceles trapezoid with $\overline{I J} \cong \overline{K L}$. What are the bases?

The bases are $\overline{I L}$ and $\overline{J K}$.
24. The figure shown is an isosceles trapezoid with $\overline{M P} \cong \overline{N O}$. What are the pairs of base angles?

$\angle N$ and $\angle M$ are a pair of base angles.
$\angle O$ and $\angle P$ are a pair of base angles.

Lesson 7.3 Skills Practice

25. The figure shown is an isosceles trapezoid with $\overline{P Q} \| \overline{R S}$. Which sides are congruent?

$\overline{P R} \cong \overline{Q S}$
26. The figure shown is an isosceles trapezoid with $\overline{L M} \| \overline{K N}$. What are the pairs of base angles?

$\angle L$ and $\angle M$ are a pair of base angles
$\angle K$ and $\angle N$ are a pair of base angles

Create each proof.
27. Write a paragraph proof to prove $\angle A B C \cong \angle A D C$ in kite $A B C D$.

You are given kite $A B C D$ with diagonals $\overline{B D}$ and $\overline{A C}$ intersecting at point E. By definition of a kite, we know that $\overline{A B} \cong \overline{A D}$ and $\overline{B C} \cong \overline{C D}$. By the Reflexive Property, you know that $\overline{A C} \cong \overline{A C}$. Therefore, $\triangle A B C \cong \triangle A D C$ by the SSS Congruence Theorem. So, $\angle A B C \cong \angle A D C$ by CPCTC.

Name Date
28. Write a two-column proof to prove $\overline{H F} \cong \overline{J F}$ in kite GHIJ.

Statements
Reasons

1. Kite GHIJ with diagonals $\overline{H J}$ and $\overline{G l}$ intersecting at point F
2. $\overline{G H} \cong \overline{G J}$ and $\overline{I H} \cong \overline{I J}$
3. $\overline{G l} \cong \overline{G I}$
4. $\triangle G H I \cong \triangle G J I$
5. $\angle H G F \cong \angle J G F$
6. $\overline{G F} \cong \overline{G F}$
7. $\triangle G H F \cong \triangle G J F$
8. $\overline{H F} \cong \overline{J F}$
9. Given
10. Definition of a kite
11. Reflexive Property
12. SSS Congruence Theorem
13. CPCTC
14. Reflexive Property
15. SAS Congruence Theorem
16. CPCTC
17. Write a paragraph proof to prove $\overline{W Z}$ bisects $\angle X W Y$ and $\angle X Z Y$ in kite $W Y Z X$.

You are given kite $W Y Z X$ with diagonals $\overline{X Y}$ and $\overline{W Z}$ intersecting at point P. By definition of a kite, we know that $\overline{W X} \cong \overline{W Y}$ and $\overline{X Z} \cong \overline{Y Z}$. By the Reflexive Property, you know that $\overline{W Z} \cong \overline{W Z}$. Therefore, $\triangle W X Z \cong \triangle W Y Z$ by the SSS Congruence Theorem. So, $\angle X W Z \cong \angle Y W Z$ and $\angle X Z W \cong \angle Y Z W$ by CPCTC. By definition of a bisector, $\overline{W Z}$ bisects $\angle X W Y$ and $\angle X Z Y$.
30. Write a paragraph proof to prove $\angle U \cong \angle T$ in isosceles trapezoid $R S T U$.

You are given isosceles trapezoid RSTU, and by the definition of a trapezoid, $\overline{R S} \| \overline{U T}$. You can construct a segment, $\overline{R X}$, which is parallel to $\overline{S T}$. Because opposite sides $R S$ and UT are parallel, quadrilateral $R S T X$ is a parallelogram, and $\overline{R X} \cong \overline{S T}$. Because the trapezoid is isosceles, $\overline{R U} \cong \overline{S T}$, and by the Transitive Property, $\overline{R X} \cong \overline{R U}$. So, $\triangle R U X$ is isosceles. Because $\triangle R U X$ is isosceles, the base angles are congruent, and $\angle R U X \cong \angle R X U$. Because $\overline{R S} \| \overline{U T}, \angle R X U \cong \angle S T U$ by the Corresponding Angles Theorem. Because $\angle R U X \cong \angle R X U$ and $\angle R X U \cong \angle S T U$, by the Transitive Property, $\angle R U X \cong \angle S T U$, or $\angle U \cong \angle T$.
31. Write a two-column proof to prove $\angle K \cong \angle L$ in isosceles trapezoid $J K L M$.

Statements
Reasons

1. Isosceles trapezoid JKLM with $\overline{K J} \cong \overline{L M}$
2. $\overline{K L} \| \overline{J M}$
3. $\angle L$ is supplementary to $\angle M$
$\angle K$ is supplementary to $\angle J$
4. Construct $\overline{K N} \| \overline{L M}$
5. Quadrilateral $K L M N$ is a parallelogram.
6. $\overline{K N} \cong \overline{L M}$
7. $\overline{K J} \cong \overline{K N}$
8. $\triangle J K N$ is isosceles
9. $\angle J \cong \angle K N J$
10. $\angle L K N \cong \angle K N J$
11. $\angle J \cong \angle L K N$
12. $\angle L K N \cong \angle M$
13. $\angle J \cong \angle M$
14. $\angle K \cong \angle L$
15. Write a two-column proof to prove that diagonals $\overline{R T}$ and $\overline{S U}$ in isosceles trapezoid RSTU are congruent if $\overline{R U} \cong \overline{S T}$.

Statements
Reasons

1. Isosceles trapezoid RSTU with $\overline{R U} \cong \overline{S T}$
2. $\overline{R S} \| \overline{U T}$
3. $\angle R U T \cong \angle S T U$
4. $\overline{U T} \cong \overline{U T}$
5. $\triangle R U T \cong \triangle S T U$
6. $\overline{R T} \cong \overline{S U}$
7. Given
8. Definition of a trapezoid
9. Base angles of an isosceles trapezoid are congruent.
10. Reflexive Property
11. SAS Congruence Theorem
12. CPCTC

Construct each isosceles trapezoid using the given information.
33. Construct isosceles trapezoid $A B C D$ if $\overline{P S}$ is the perimeter of the trapezoid.

Name
Date
34. Construct isosceles trapezoid $W X Y Z$ if $\overline{A D}$ is the perimeter of the trapezoid.

35. Construct isosceles trapezoid $E F G H$ if $\overline{W Z}$ is the perimeter of the trapezoid.

36. Construct isosceles trapezoid $P Q R S$ if $\overline{F J}$ is the perimeter of the trapezoid.

37. Construct isosceles trapezoid $J K L M$ if $\overline{T W}$ is the perimeter of the trapezoid.

38. Construct isosceles trapezoid STUV if $\overline{E H}$ is the perimeter of the trapezoid.

Use the given information to answer each question.
39. Alice created a kite out of two sticks and some fabric. The sticks were 10 inches and 15 inches long. She tied the sticks together so they were perpendicular and attached the fabric. When she measured the kite, she noticed that the distance from where the sticks meet to the top of the kite was 5 inches. What is the area of the kite Alice created?
$A=2\left(\frac{1}{2}\right)(5)(5)+2\left(\frac{1}{2}\right)(5)(10)$
$A=25+50$
$A=75$
The area of the kite is 75 square inches.
\qquad
40. Simon connected a square and two congruent right triangles together to form an isosceles trapezoid.

Draw a diagram to represent the isosceles trapezoid.

41. Magda told Sam that an isosceles trapezoid must also be a parallelogram because there is a pair of congruent sides in an isosceles trapezoid. Is Magda correct? Explain.
Magda is incorrect. Parallelograms have two pairs of parallel sides. Trapezoids have exactly one pair of parallel sides. A trapezoid is not a parallelogram.
42. Sylvia drew what she thought was an isosceles trapezoid. She measured the base angles and determined that they measured $81^{\circ}, 79^{\circ}, 101^{\circ}$ and 99°. Could her drawing be an isosceles trapezoid? Explain.
Sylvia's drawing could not be an isosceles trapezoid. The base angles of an isosceles trapezoid are congruent. The base angles of Sylvia's figure are not congruent.
43. Joanne constructed a kite with a perimeter of 38 centimeters so that the sum of the two shorter sides is 10 centimeters. What are the lengths of each of the two longer sides?
$38-10=28$
$28 \div 2=14$
Each of the shorter sides is 14 centimeters.
44. Ilyssa constructed a kite that has side lengths of 8 inches and 5 inches. What are the lengths of the other two sides? Explain.
A kite has two pairs of congruent sides. The lengths of the other two sides must also be 8 inches and 5 inches.

Lesson 7.4 Skills Practice

Name
Date

Interior Angles of a Polygon

Sum of the Interior Angle Measures of a Polygon

Vocabulary

Give an example of the term.

1. Draw an example of a polygon. Label the interior angles of the polygon.

Problem Set

Draw all possible diagonals from vertex A for each polygon. Then write the number of triangles formed by the diagonals.

2 triangles
3.

6 triangles
2.

4 triangles
4.

2 triangles

LeSSON 7.4 Skills Practice

3 triangles
6.

5 triangles

Use the triangles formed by diagonals to calculate the sum of the interior angle measures of each polygon.
7. Draw all of the diagonals that connect to vertex A. What is the sum of the interior angles of square $A B C D$?

The diagonal divides the figure into two triangles. The sum of the interior angles of each triangle is 180°, so I multiplied 180° by 2 to determine the sum of the interior angles of the figure:
$180^{\circ} \times 2=360^{\circ}$
The sum of the interior angles is 360°.
8. Draw all of the diagonals that connect to vertex E. What is the sum of the interior angles of figure $E F G H I$?

The diagonals divide the figure into 3 triangles. The sum of the interior angles of each triangle is 180°, so I multiplied 180° by 3 to determine the sum of the interior angles of the figure:
$180^{\circ} \times 3=540^{\circ}$
The sum of the interior angles is 540°.
9. Draw all of the diagonals that connect to vertex J . What is the sum of the interior angles of figure JKMONL?

The diagonals divide the figure into 4 triangles. The sum of the interior angles of each triangle is 180°, so I multiplied 180° by 4 to determine the sum of the interior angles of the figure:
$180^{\circ} \times 4=720^{\circ}$
The sum of the interior angles is 720°.
10. Draw all of the diagonals that connect to vertex P. What is the sum of the interior angles of the figure PQRSTUV?

The diagonals divide the figure into 5 triangles. The sum of the interior angles of each triangle is 180°, so I multiplied 180° by 5 to determine the sum of the interior angles of the figure:
$180^{\circ} \times 5=900^{\circ}$
The sum of the interior angles is 900°.
11. Draw all of the diagonals that connect to vertex W. What is the sum of the interior angles of the figure $W X Y Z A B C D$?

The diagonals divide the figure into 6 triangles. The sum of the interior angles of each triangle is 180°, so I multiplied 180° by 6 to determine the sum of the interior angles of the figure.
$180^{\circ} \times 6=1080^{\circ}$
The sum of the interior angles is 1080°.
12. Draw all of the diagonals that connect to vertex H. What is the sum of the interior angles of the figure HIJKLMNOP?

The diagonals divide the figure into 7 triangles. The sum of the interior angles of each triangle is 180°, so I multiplied 180° by 7 to determine the sum of the interior angles of the figure.
$180^{\circ} \times 7=1260^{\circ}$
The sum of the interior angles is 1260°.

Calculate the sum of the interior angle measures of each polygon.
13. A polygon has 8 sides.

The sum is equal to $(n-2) \cdot 180^{\circ}$:
$(8-2) \cdot 180^{\circ}=6 \cdot 180^{\circ}=1080^{\circ}$
The sum of the interior angles of the polygon is 1080°.
14. A polygon has 9 sides.

The sum is equal to $(n-2) \cdot 180^{\circ}$:
$(9-2) \cdot 180^{\circ}=7 \cdot 180^{\circ}=1260^{\circ}$
The sum of the interior angles of the polygon is 1260°.
15. A polygon has 13 sides.

The sum is equal to $(n-2) \cdot 180^{\circ}$:
$(13-2) \cdot 180^{\circ}=11 \cdot 180^{\circ}=1980^{\circ}$
The sum of the interior angles of the polygon is 1980°.
16. A polygon has 16 sides.

The sum is equal to $(n-2) \cdot 180^{\circ}$:
$(16-2) \cdot 180^{\circ}=14 \cdot 180^{\circ}=2520^{\circ}$
The sum of the interior angles of the polygon is 2520°.
17. A polygon has 20 sides.

The sum is equal to $(n-2) \cdot 180^{\circ}$.
$(20-2) \cdot 180^{\circ}=18 \cdot 180=3240^{\circ}$
The sum of the interior angles of the polygon is 3240°.
18. A polygon has 25 sides.

The sum is equal to $(n-2) \cdot 180^{\circ}$.
$(25-2) \cdot 180^{\circ}=23 \cdot 180=4140^{\circ}$
The sum of the interior angles of the polygon is 4140°.

LeSSON 7.4 Skills Practice

The sum of the measures of the interior angles of a polygon is given. Determine the number of sides for each polygon.
19. 1080°

$$
\begin{aligned}
180^{\circ}(n-2) & =1080^{\circ} \\
n-2 & =6 \\
n & =8
\end{aligned}
$$

8 sides

21. 540°
$180^{\circ}(n-2)=540^{\circ}$

$$
\begin{aligned}
n-2 & =3 \\
n & =5
\end{aligned}
$$

5 sides
23. 3780°

$$
\begin{aligned}
180^{\circ}(n-2) & =3780^{\circ} \\
n-2 & =21 \\
n & =23
\end{aligned}
$$

23 sides
20. 1800°
$180^{\circ}(n-2)=1800^{\circ}$
$n-2=10$
$n=12$
12 sides
22. 1260°
$180^{\circ}(n-2)=1260^{\circ}$
$n-2=7$
$n=9$
9 sides
24. 6840°
$180^{\circ}(n-2)=6840^{\circ}$
$n-2=38$
$n=40$
40 sides

For each regular polygon, calculate the measure of each of its interior angles.
25.

$$
\begin{aligned}
\frac{(n-2) 180^{\circ}}{n} & =\frac{(8-2) 180^{\circ}}{8} \\
& =\frac{(6) 180^{\circ}}{8} \\
& =\frac{1080^{\circ}}{8} \\
& =135^{\circ}
\end{aligned}
$$

The measure of each interior angle is 135°.
26.

$$
\begin{aligned}
\frac{(n-2) 180^{\circ}}{n} & =\frac{(10-2) 180^{\circ}}{10} \\
& =\frac{(8) 180^{\circ}}{10} \\
& =\frac{1440^{\circ}}{10} \\
& =144^{\circ}
\end{aligned}
$$

The measure of each interior angle is 144°.

Name Date
27.

$$
\begin{aligned}
\frac{(n-2) 180^{\circ}}{n} & =\frac{(6-2) 180^{\circ}}{6} \\
& =\frac{(4) 180^{\circ}}{6} \\
& =\frac{720^{\circ}}{6} \\
& =120^{\circ}
\end{aligned}
$$

The measure of each interior angle is 120°.
29.

$$
\begin{aligned}
\frac{(n-2) 180^{\circ}}{n} & =\frac{(5-2) 180^{\circ}}{5} \\
& =\frac{(3) 180^{\circ}}{5} \\
& =\frac{540^{\circ}}{5} \\
& =108^{\circ}
\end{aligned}
$$

The measure of each interior angle is 108°.
28.

$$
\begin{aligned}
\frac{(n-2) 180^{\circ}}{n} & =\frac{(9-2) 180^{\circ}}{9} \\
& =\frac{(7) 180^{\circ}}{9} \\
& =\frac{1260^{\circ}}{9} \\
& =140^{\circ}
\end{aligned}
$$

The measure of each interior angle is 140°.
30.

$$
\begin{aligned}
\frac{(n-2) 180^{\circ}}{n} & =\frac{(7-2) 180^{\circ}}{7} \\
& =\frac{(5) 180^{\circ}}{7} \\
& =\frac{900^{\circ}}{7} \\
& \approx 128.6^{\circ}
\end{aligned}
$$

The measure of each interior angle is approximately 128.6°.

LeSSON 7.4 Skills Practice

Calculate the number of sides for each polygon.
31. The measure of each angle of a regular polygon is 108°.

$$
\begin{aligned}
108^{\circ} & =\frac{(n-2) 180^{\circ}}{n} \\
108^{\circ} n & =(n-2)\left(180^{\circ}\right) \\
108^{\circ} n & =180^{\circ} n-360^{\circ} \\
72^{\circ} n & =360^{\circ} \\
n & =5
\end{aligned}
$$

The regular polygon has 5 sides.
32. The measure of each angle of a regular polygon is 156°.

$$
\begin{aligned}
156^{\circ} & =\frac{(n-2) 180^{\circ}}{n} \\
156^{\circ} n & =(n-2)\left(180^{\circ}\right) \\
156^{\circ} n & =180^{\circ} n-360^{\circ} \\
24^{\circ} n & =360^{\circ} \\
n & =15
\end{aligned}
$$

The regular polygon has 15 sides.
33. The measure of each angle of a regular polygon is 160°.

$$
\begin{aligned}
160^{\circ} & =\frac{(n-2) 180^{\circ}}{n} \\
160^{\circ} n & =(n-2)\left(180^{\circ}\right) \\
160^{\circ} n & =180^{\circ} n-360^{\circ} \\
20^{\circ} n & =360^{\circ} \\
n & =18
\end{aligned}
$$

The regular polygon has 18 sides.
34. The measure of each angle of a regular polygon is 162°.

$$
\begin{aligned}
162^{\circ} & =\frac{(n-2) 180^{\circ}}{n} \\
162^{\circ} n & =(n-2)\left(180^{\circ}\right) \\
162^{\circ} n & =180^{\circ} n-360^{\circ} \\
18^{\circ} n & =360^{\circ} \\
n & =20
\end{aligned}
$$

The regular polygon has 20 sides.

Name Date
35. The measure of each angle of a regular polygon is 144°.

$$
\begin{aligned}
144^{\circ} & =\frac{(n-2) 180^{\circ}}{n} \\
144^{\circ} n & =(n-2)\left(180^{\circ}\right) \\
144^{\circ} n & =180^{\circ} n-360^{\circ} \\
36^{\circ} n & =360^{\circ} \\
n & =10
\end{aligned}
$$

The regular polygon has 10 sides.
36. The measure of each angle of a regular polygon is 165.6°.

$$
\begin{aligned}
165.6^{\circ} & =\frac{(n-2) 180^{\circ}}{n} \\
165.6^{\circ} n & =(n-2)\left(180^{\circ}\right) \\
165.6^{\circ} n & =180^{\circ} n-360^{\circ} \\
14.4^{\circ} n & =360^{\circ} \\
n & =25
\end{aligned}
$$

The regular polygon has 25 sides.

Exterior and Interior Angle Measurement Interactions Sum of the Exterior Angle Measures of a Polygon

Vocabulary

Identify the term in the diagram.

1. Identify the term that is illustrated by the arrow in the diagram below.

exterior angle of a polygon

Problem Set

Extend each vertex of the polygon to create one exterior angle at each vertex.
1.

2.

3.

4.

LeSSON 7.5 Skills Practice

5.

6.

Calculate the sum of the measures of the exterior angles for each polygon.
7. pentagon
360°
8. hexagon
360°
9. triangle
360°
10. nonagon
360°
11. 20-gon
360°
12. 150-gon 360°

Given the measure of an interior angle of a polygon, calculate the measure of the adjacent exterior angle.
13. What is the measure of an exterior angle if it is adjacent to an interior angle of a polygon that measures 90° ?
Interior and exterior angles are supplementary. So subtract 90°, the measure of the interior angle, from 180°.

Name
Date \qquad
14. What is the measure of an exterior angle if it is adjacent to an interior angle of a polygon that measures 120° ?

Interior and exterior angles are supplementary. So subtract 120°, the measure of the interior angle, from 180°.
$180^{\circ}-120^{\circ}=60^{\circ}$
15. What is the measure of an exterior angle if it is adjacent to an interior angle of a polygon that measures 108° ?

Interior and exterior angles are supplementary. So subtract 108°, the measure of the interior angle, from 180°.
$180^{\circ}-108^{\circ}=72^{\circ}$
16. What is the measure of an exterior angle if it is adjacent to an interior angle of a polygon that measures 135° ?
Interior and exterior angles are supplementary. So subtract 135°, the measure of the interior angle, from 180°.
$180^{\circ}-135^{\circ}=45^{\circ}$
17. What is the measure of an exterior angle if it is adjacent to an interior angle of a polygon that measures 115° ?

Interior and exterior angles are supplementary. So subtract 115°, the measure of the interior angle, from 180°.
$180^{\circ}-115^{\circ}=65^{\circ}$
18. What is the measure of an exterior angle if it is adjacent to an interior angle of a polygon that measures 124° ?
Interior and exterior angles are supplementary. So subtract 124°, the measure of the interior angle, from 180°.
$180^{\circ}-124^{\circ}=56^{\circ}$
Given the regular polygon, calculate the measure of each of its exterior angles.
19. What is the measure of each exterior angle of a square?

$$
\frac{360}{4}=90^{\circ}
$$

20. What is the measure of each exterior angle of a regular pentagon?

$$
\frac{360}{5}=72^{\circ}
$$

Lesson 7.5 Skills Practice

21. What is the measure of each exterior angle of a regular hexagon?
$\frac{360}{6}=60^{\circ}$
22. What is the measure of each exterior angle of a regular octagon? $\frac{360}{8}=45^{\circ}$
23. What is the measure of each exterior angle of a regular decagon?
$\frac{360}{10}=36^{\circ}$
24. What is the measure of each exterior angle of a regular 12-gon?
$\frac{360}{12}=30^{\circ}$
Calculate the number of sides of the regular polygon given the measure of each exterior angle.
25. 45°
$\frac{360}{n}=45$
$45 n=360$

$$
n=8
$$

8 sides
27. 36°
$\frac{360}{n}=36$
$36 n=360$
$n=10$
10 sides
26. 90°
$\frac{360}{n}=90$
$90 n=360$
$n=4$
4 sides
29. 40°
$\frac{360}{n}=40$
$40 n=360$

$$
n=9
$$

9 sides
28. 60°
$\frac{360}{n}=60$
$60 n=360$
$n=6$
6 sides
30. 30°
$\frac{360}{n}=30$
$30 n=360$

$$
n=12
$$

12 sides

Quadrilateral Family Categorizing Quadrilaterals Based on Their Properties

Problem Set

List all of the quadrilaterals that have the given characteristic.

1. all sides congruent
square and rhombus
2. no parallel sides
kite
3. diagonals congruent
rectangle and square
4. diagonals bisect each other
parallelogram, rectangle, rhombus, and square
5. two pairs of parallel sides
parallelogram, rectangle, rhombus, and square
6. all angles congruent rectangle and square

Identify all of the terms from the following list that apply to each figure: quadrilateral, parallelogram, rectangle, square, trapezoid, rhombus, kite.

rhombus
parallelogram
quadrilateral
8.

rectangle
parallelogram
quadrilateral

Lesson 7.6 Skills Practice

kite
quadrilateral
11.

square
rectangle
rhombus
parallelogram
quadrilateral
10.

quadrilateral
12.

parallelogram
quadrilateral

Name the type of quadrilateral that best describes each figure. Explain your answer.
13.

Rectangle. The quadrilateral has two pairs of parallel sides and four right angles, but the four sides are not all congruent.
14.

Trapezoid. This quadrilateral has exactly two parallel sides.

Name
Date
15.

Rhombus. This quadrilateral has four congruent sides and two pairs of parallel sides, but it has no right angles.
16.

Square. This quadrilateral has two pairs of parallel sides, four right angles, and four congruent sides.
17.

Quadrilateral. This figure has no congruent sides or angles, and no parallel sides.
18.

Kite. This quadrilateral has two pairs of adjacent congruent sides, but no parallel sides.

Draw the part of the Venn diagram that is described.
19. Suppose that part of a Venn diagram has two circles. One circle represents all types of quadrilaterals with four congruent sides. The other circle represents all types of quadrilaterals with four congruent angles. Draw this part of the Venn diagram and label it with the appropriate types of quadriaterals.

20. Suppose that part of a Venn diagram has two circles. One circle represents all types of quadriaterals with two pairs of congruent sides (adjacent or opposite). The other circle represents all types of quadrilaterals with at least one pair of parallel sides. Draw this part of the Venn diagram and label it with the appropriate types of quadrilaterals.

Name Date
21. Suppose that part of a Venn diagram has two circles. One circle represents all types of quadrilaterals with two pairs of parallel sides. The other circle represents all types of quadrilaterals with four congruent sides. Draw this part of the Venn diagram and label it with the appropriate types of quadrilaterals.

22. Suppose that part of a Venn diagram has two circles. One circle represents all types of quadrilaterals with four right angles. The other circle represents all types of quadrilaterals with two pairs of parallel sides. Draw this part of the Venn diagram and label it with the appropriate types of quadrilaterals.

LESSON 7.6 Skills Practice

23. Suppose that a Venn diagram has two circles. One circle represents all types of quadrilaterals with four congruent sides. The other circle represents all types of quadrilaterals with congruent diagonals. Draw this part of the Venn diagram and label it with the appropriate types of quadrilaterals.

24. Suppose that a Venn diagram has two circles. One circle represents all types of quadrilaterals with diagonals that bisect the vertex angles. The other circle represents all types of quadrilaterals with perpendicular diagonals. Draw this part of the Venn diagram and label it with the appropriate types of quadrilaterals.

Name
Date

Tell whether the statement is true or false. If false, explain why.
25. A trapezoid is also a parallelogram.

False. Parallelograms have two pairs of parallel sides. Trapezoids only have one pair.
26. A square is also a rhombus.

True
27. Diagonals of a rectangle are perpendicular.

False. The diagonals of a rhombus, square, and a kite are perpendicular.
28. A parallelogram has exactly one pair of opposite angles congruent.

False. Both pairs of opposite angles are congruent in a parallelogram.
29. A square has diagonals that are perpendicular and congruent.

True.
30. All quadrilaterals have supplementary consecutive angles.

False. All parallelograms have supplementary consecutive angles, not quadrilaterals.

List the steps to tell how you would construct the quadrilateral with the given information.
31. Rectangle $H I J K$ given only diagonal $\overline{H J}$.

1. Duplicate $\overline{H J}$ and bisect it to determine the midpoint.
2. Duplicate $\overline{H J}$ again, labeling it $\overline{I K}$, and bisecting it to determine the midpoint.
3. Draw segments $\overline{H J}$ and $\overline{I K}$ so that their midpoints intersect.
4. Connect the endpoints of the segments to form rectangle HIJK.
5. Square $A B C D$ given only diagonal $\overline{A C}$.
6. Duplicate $\overline{A C}$ and bisect it to determine the midpoint.
7. Draw the perpendicular bisector of $\overline{A C}$.
8. Duplicate $\overline{A C}$ again, labeling it $\overline{B D}$, and bisecting it to determine the midpoint.
9. Duplicate segment $\overline{B D}$ so that it is along the perpendicular bisector of $\overline{A C}$ and the midpoints of $\overline{A C}$ and $\overline{B D}$ meet.
10. Connect the endpoints of the segments to form square $A B C D$.
11. Kite RTSU given only diagonal $\overline{R S}$.
12. Duplicate $\overline{R S}$.
13. Construct a perpendicular segment to $\overline{R S}$ such that $\overline{R S}$ bisects the perpendicular segment.
14. Label the perpendicular segment $\overline{T U}$.
15. Connect the endpoints of the two segments to form kite RSTU.
16. Rhombus $M N O P$ given only diagonal $\overline{M O}$.
17. Duplicate $\overline{M O}$ and bisect it to determine the midpoint.
18. Draw the perpendicular bisector of $\overline{M O}$.
19. Draw a segment $\overline{N P}$ and bisect it to determine the midpoint.
20. Duplicate segment $\overline{N P}$ so that it is along the perpendicular bisector of $\overline{M O}$ and the midpoints of $\overline{N P}$ and $\overline{M O}$ meet.
21. Connect the endpoints of the segments to form a rhombus MNOP.
22. Parallelogram $J K L M$ given only diagonal \bar{J}.
23. Duplicate \bar{J} and bisect it to determine the midpoint.
24. Draw a segment $\overline{K M}$, and bisect it to determine the midpoint.
25. Draw segments $\overline{J L}$ and $\overline{K M}$ so that their midpoints intersect.
26. Connect the endpoints of the segments to form parallelogram JKLM.
27. Isosceles trapezoid $B C D E$ given only diagonal $\overline{B D}$.
28. Draw a line. Construct a line parallel to the line drawn.
29. Duplicate $\overline{B D}$ so that its endpoints lie on the parallel lines. Label the segment $\overline{B D}$.
30. Duplicate $\overline{B D}$ again so that its endpoints lie on the parallel lines and intersects the first line drawn. Label the segment $\overline{C E}$.
31. Connect the endpoints of the segments to form isosceles trapezoid $B C D E$.
