Lesson 9.1 Skills Practice

Name
Date

Riding a Ferris Wheel

Introduction to Circles

Vocabulary

Identify an instance of each term in the diagram.

1. center of the circle point A
2. chord
$\overline{H I}, \overline{U V}, \overline{B N}$, or $\overline{M N}$
3. secant of the circle $\overleftrightarrow{M N}$
4. central angle
$\angle V A P$
5. inscribed angle
$\angle M N B$

6. arc
Sample answer: $\overparen{H I}$
7. tangent of the circle $\overleftrightarrow{X T}$
8. major arc
Sample answer: $\widehat{H B V}$
9. point of tangency point X
10. minor arc
Sample answer: $\overparen{M P}$
11. diameter
$\overline{U V}$
12. semicircle
$\overline{U V}$

Problem Set

Identify the indicated part of each circle. Explain your answer.

1. O
2. $\overline{N P}$

Segment $N P$ is a chord. It is a line segment that connects two points on the circle.
3. $\overleftrightarrow{A B}$

Line $A B$ is a tangent. It is a line that intersects the circle at exactly one point, A.
4. D

Point D is a point of tangency. It is the point at which the tangent $\overleftrightarrow{D E}$ intersects the circle.
5. $\overline{J H}$

Segment JH is a chord. It is a line segment that connects two points on the circle.
6. $\overleftrightarrow{M N}$

Line $M N$ is a secant. It is a line that intersects the circle at two points.

Name Date
7. $\angle S Q R$

Angle $S Q R$ is an inscribed angle. It is an angle whose vertex lies on the circle.
8. $\angle T O U$

Angle TOU is a central angle. It is an angle whose vertex is the center of the circle.

Identify each angle as an inscribed angle or a central angle.
9. $\angle U R E$

Angle URE is an inscribed angle.
10. $\angle Z O M$

Angle $Z O M$ is a central angle.
11. $\angle K O M$

Angle $K O M$ is a central angle.
12. $\angle Z K U$

Angle $Z K U$ is an inscribed angle.
13. $\angle M O U$

Angle MOU is a central angle.
14. $\angle R O K$

Angle ROK is a central angle.

Classify each arc as a major arc, a minor arc, or a semicircle.
15. $\overparen{A C}$

Arc $A C$ is a minor arc.

17. $\overparen{F H I}$

Arc $F H I$ is a major arc.
19. $\overparen{N P Q}$

Arc NPQ is a semicircle.

Draw the part of a circle that is described.
21. Draw chord $\overline{A B}$.

16. $\overparen{D E}$

Arc $D E$ is a minor arc.
18. $\overparen{J M L}$

Arc $J M L$ is a major arc.
20. $\overparen{T R S}$

Arc TRS is a semicircle.

Name Date \qquad
23. Draw secant $\overleftrightarrow{G H}$.

Answers will vary.

25. Label the point of tangency A.

Answers will vary.

24. Draw a tangent at point J.

Answers will vary.

26. Label center C.

Answers will vary.

28. Draw central angle $\angle H O I$.

Answers will vary.

\qquad

Take the Wheel
 Central Angles, Inscribed Angles, and Intercepted Arcs

Vocabulary

Define each term in your own words.

1. degree measure of a minor arc

The degree measure of a minor arc is the same as the measure of its central angle.
2. adjacent arcs

Adjacent arcs are two arcs of the same circle sharing a common endpoint.
3. Arc Addition Postulate

The Arc Addition Postulate states: "The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs."
4. intercepted arc

An intercepted arc is an arc associated with and determined by angles of a circle. An intercepted arc is a portion of the circumference of the circle located on the interior of the angle whose endpoints lie on the sides of the angle.
5. Inscribed Angle Theorem

The Inscribed Angle Theorem states: "The measure of an inscribed angle is equal to one-half the measure of its intercepted arc."
6. Parallel Lines-Congruent Arcs Theorem

The Parallel Lines-Congruent Arcs Theorem states: "Parallel lines intercept congruent arcs on a circle."

Problem Set

Determine the measure of each minor arc.

1. $\overparen{A B}$

The measure of $\overparen{A B}$ is 90°.
2. $\overparen{C D}$

The measure of $\overparen{C D}$ is 60°.
3. $\overparen{E F}$

The measure of $\overparen{E F}$ is 45°.
4. $\overparen{G H}$

The measure of $\overparen{G H}$ is 135°.
5. IJ

The measure of $\widehat{\jmath}$ is 120°.
6. $\overparen{K L}$

The measure of $\overparen{K L}$ is 85°.

Name Date \qquad

Determine the measure of each central angle.

$m \angle X Y Z=80^{\circ}$
8. $m \angle B G T$

$$
m \angle B G T=150^{\circ}
$$

9. $m \angle L K J$

$m \angle L K J=128^{\circ}$
10. $m \angle F M R$

$$
m \angle F M R=103^{\circ}
$$

11. $m \angle K W S$

11. $\quad \angle K W S$

$$
m \angle K W S=70^{\circ}
$$

12. $m \angle V I Q$

$$
m \angle V I Q=180^{\circ}
$$

Determine the measure of each inscribed angle.
13. $m \angle X Y Z$

$$
m \angle X Y Z=75^{\circ}
$$

15. $m \angle K L S$

$m \angle K L S=56^{\circ}$
16. $m \angle Q B R$

$m \angle Q B R=77.5^{\circ}$
17. $m \angle M T U$

$m \angle M T U=41^{\circ}$
18. $m \angle D V A$

$m \angle D V A=43^{\circ}$
19. $m \angle S G /$

$m \angle S G I=14^{\circ}$

Name \qquad

Determine the measure of each intercepted arc.
19. $m \overparen{K M}$

$m \overparen{K M}=108^{\circ}$
21. $m \overparen{Q W}$

$m \overparen{Q W}=162^{\circ}$
23. $m \overparen{M E}$

$m \overparen{M E}=104^{\circ}$
20. mIU

$$
m \overparen{I U}=72^{\circ}
$$

22. $m \overparen{T V}$

$$
m \overparen{T V}=62^{\circ}
$$

24. $m \overparen{D S}$

$$
m \overparen{D S}=180^{\circ}
$$

LESSON 9.2 Skills Practice

Calculate the measure of each angle.
25. The measure of $\angle A O B$ is 62°. What is the measure of $\angle A C B$?

$m \angle A C B=\frac{1}{2}(m \angle A O B)=\frac{62^{\circ}}{2}=31^{\circ}$
26. The measure of $\angle C O D$ is 98°. What is the measure of $\angle C E D$?

$m \angle C E D=\frac{1}{2}(m \angle C O D)=\frac{98}{2^{\circ}}=49^{\circ}$
27. The measure of $\angle E O G$ is 128°. What is the measure of $\angle E F G$?

$m \angle E F G=\frac{1}{2}(m \angle E O G)=\frac{128^{\circ}}{2}=64^{\circ}$

Name Date
28. The measure of $\angle \mathrm{GOH}$ is 74°. What is the measure of $\angle \mathrm{GIH}$?

$$
m \angle G I H=\frac{1}{2}(m \angle G O H)=\frac{74^{\circ}}{2}=37^{\circ}
$$

29. The measure of $\angle J O K$ is 168°. What is the measure of $\angle J I K$?

$m \angle J I K=\frac{1}{2}(m \angle J O K)=\frac{168^{\circ}}{2}=84^{\circ}$
30. The measure of $\angle K O L$ is 148°. What is the measure of $\angle K M L$?

Lesson 9.2 Skills Practice

Use the given information to answer each question.
31. In circle $C, m \overparen{X Z}=86^{\circ}$. What is $m \overparen{W Y}$?

32. In circle $C, m \angle W C X=102^{\circ}$. What is $m \overparen{Y Z}$?

$$
m \overparen{Y Z}=102^{\circ}
$$

33. In circle $C, m \overparen{W Z}=65^{\circ}$ and $m \overparen{X Z}=38^{\circ}$. What is $m \angle W C X$?

$m \angle W C X=65^{\circ}+38^{\circ}=103^{\circ}$

Name Date \qquad
34. In circle $C, m \angle W C X=105^{\circ}$. What is $m \angle W Y X$?

35. In circle $C, m \angle W C Y=83^{\circ}$. What is $m \angle X C Z$?

$$
m \angle X C Z=83^{\circ}
$$

36. In circle $C, m \angle W Y X=50^{\circ}$ and $m \angle X Y Z=30^{\circ}$. What is $m \overparen{W X} Z$?

$m \overparen{W X Z}=2\left(50^{\circ}+30^{\circ}\right)=2\left(80^{\circ}\right)=160^{\circ}$
\qquad

Manhole Covers

Measuring Angles Inside and Outside of Circles

Vocabulary

Define each theorem in your own words.

1. Interior Angles of a Circle Theorem

The Interior Angles of a Circle Theorem states that an interior angle measure is one half of the sum of the intercepted arcs.
2. Exterior Angles of a Circle Theorem

The Exterior Angles of a Circle Theorem states that an exterior angle measure is one half of the difference of the intercepted arcs.
3. Tangent to a Circle Theorem

The Tangent to a Circle Theorem states that a line drawn tangent to a circle is perpendicular to a radius of the circle drawn to the point of tangency.

Problem Set

Write an expression for the measure of the given angle.

1. $m \angle R P M$

$m \angle R P M=\frac{1}{2}(m \overparen{R M}+m \overparen{Q N})$
2. $m \angle A C D$

$$
m \angle A C D=\frac{1}{2}(m \overparen{A D}+m \overparen{B E})
$$

3. $m \angle J N K$

$m \angle J N K=\frac{1}{2}(m \overparen{L M}+m \overparen{J K})$
4. $m \angle U W V$

$$
m \angle U W V=\frac{1}{2}(m \overparen{U V}+m \overparen{X Y})
$$

5. $m \angle S W T$

$m \angle S W T=\frac{1}{2}(m \overparen{S T}+m \overparen{V U})$
6. $m \angle H J I$

$m \angle H J I=\frac{1}{2}(m \overparen{F G}+m \overparen{H I})$

List the intercepted $\operatorname{arc}(\mathrm{s})$ for the given angle.

$$
\overparen{N P}, \overparen{Q R}
$$

SU

Name \qquad Date \qquad

10. $\angle Z W A$

11. $\angle B D E$

$\overparen{B Z D}$
12. $\angle J L M$

$\overparen{J Z M}, \overparen{K M}$

Write an expression for the measure of the given angle.
13. $m \angle D A C$

$m \angle D A C=\frac{1}{2}(m \overparen{D E C}-m \overparen{B C})$
14. $m \angle U X Y$

$m \angle U X Y=\frac{1}{2}(m \widetilde{X Z U})$
15. $m \angle S R T$

$$
m \angle S R T=\frac{1}{2}(m \overparen{S V T}-m \overparen{S U})
$$

17. $m \angle E C G$

$m \angle E C G=\frac{1}{2}(m \overparen{E H G}-m \overparen{D F})$
18. $m \angle F J G$

$m \angle F J G=\frac{1}{2}(m \overparen{F G}-m \overparen{H I})$
19. $m \angle L P N$

$m \angle L P N=\frac{1}{2}(m \overparen{L M P})$

Lesson 9.3 Skills Practice

Name
Date

Create a proof to prove each statement.
19. Given: Chords $\overline{A E}$ and $\overline{B D}$ intersect at point C.

Prove: $m \angle A C B=\frac{1}{2}(m \overparen{A B}+m \overparen{D E})$

Statements

1. Chords $\overline{A E}$ and $\overline{B D}$ intersect at point C.
2. Draw chord $\overline{A D}$
3. $m \angle A C B=m \angle D+m \angle A$
4. $m \angle A=\frac{1}{2} m \overparen{D E}$
5. $m \angle D=\frac{1}{2} m \overparen{A B}$
6. $m \angle A C B=\frac{1}{2} m \overparen{D E}+\frac{1}{2} m \overparen{A B}$
7. $m \angle A C B=\frac{1}{2}(m \overparen{A B}+m \overparen{D E})$
8. Given
9. Construction
10. Exterior Angle Theorem
11. Inscribed Angle Theorem
12. Inscribed Angle Theorem
13. Substitution
14. Distributive Property

Lesson 9.3 Skills Practice

20. Given: Secant $\overleftrightarrow{Q T}$ and tangent $\overleftrightarrow{S R}$ intersect at point S.

Prove: $m \angle Q S R=\frac{1}{2}(m \overparen{Q R}-m \overparen{R T})$

Statements

1. Secant $\overleftrightarrow{Q T}$ and tangent $\overleftrightarrow{S R}$ intersect at point S.
2. Draw chord $\overline{Q R}$
3. $m \angle Q R P=m \angle R Q S+m \angle Q S R$
4. $m \angle Q S R=m \angle Q R P-m \angle R Q S$
5. $m \angle Q R P=\frac{1}{2} m \overparen{R Q}$
6. $m \angle R Q S=\frac{1}{2} m \overparen{R T}$
7. $m \angle Q S R=\frac{1}{2} m \overparen{R Q}-\frac{1}{2} m \overparen{R T}$
8. $m \angle Q S R=\frac{1}{2}(m \overparen{R Q}-m \overparen{R T})$

Reasons

1. Given
2. Construction
3. Exterior Angle Theorem
4. Subtraction Property of Equality
5. Exterior Angle of a Circle Theorem
6. Inscribed Angle Theorem
7. Substitution
8. Distributive Property

Name Date
21. Given: Tangents $\overleftarrow{V Y}$ and $\overleftarrow{X Y}$ intersect at point Y.

Prove: $m \angle Y=\frac{1}{2}(m \overparen{V W X}-m \overparen{V})$

Reasons

1. Tangents $\overleftrightarrow{V Y}$ and tangent $\overleftarrow{X Y}$ intersect at point Y.
2. Draw chord $\overline{V X}$
3. $m \angle V X B=m \angle Y+m \angle Y V X$
4. $m \angle Y=m \angle V X B-m \angle Y V X$
5. $m \angle V X B=\frac{1}{2} m \overparen{V W X}$
6. $m \angle Y V X=\frac{1}{2} m \overparen{V X}$
7. $m \angle Y=\frac{1}{2} m \overparen{V W X}-\frac{1}{2} m \overparen{V X}$
8. $m \angle Y=\frac{1}{2}(m \overparen{V W X}-m \overparen{V X})$
9. Given
10. Construction
11. Exterior Angle Theorem
12. Subtraction Property of Equality
13. Exterior Angle of a Circle Theorem
14. Exterior Angle of a Circle Theorem
15. Substitution
16. Distributive Property

Lesson 9.3 Skills Practice

22. Given: Chords $\overline{F I}$ and $\overline{G H}$ intersect at point J.

Prove: $m \angle F J H=\frac{1}{2}(m \overparen{F H}+m \overparen{G I})$

Statements
Reasons

1. Chords $\overline{F I}$ and $\overline{G H}$
intersect at point J.
2. Draw chord $\overline{F G}$
3. $m \angle F J H=m \angle G+m \angle F$
4. $m \angle F=\frac{1}{2} m \overparen{G I}$
5. $m \angle G=\frac{1}{2} m \overparen{F H}$
6. $m \angle F J H=\frac{1}{2} m \overparen{F H}+\frac{1}{2} m \overparen{G I}$
7. $m \angle F J H=\frac{1}{2}(m \overparen{F H}+m \overparen{G l})$
8. Given
9. Construction
10. Exterior Angle Theorem
11. Inscribed Angle Theorem
12. Inscribed Angle Theorem
13. Substitution
14. Distributive Property

Name Date
23. Given: Secant \overleftrightarrow{J} and tangent $\overleftarrow{N L}$ intersect at point L.

Prove: $m \angle L=\frac{1}{2}(m \overparen{J M}-m \overparen{K M})$

Statements	Reasons
1. Secant \overleftrightarrow{J} and tangent $\overleftarrow{N L}$ intersect at point L.	1. Given
2. Draw chord $\overparen{J M}$	2. Construction
3. $m \angle J M N=m \angle M J L+m \angle L$	3. Exterior Angle Theorem
4. $m \angle L=m \angle J M N-m \angle M J L$	4. Subtraction Property of Equality
5. $m \angle J M N=\frac{1}{2} m \overparen{J M}$	5. Exterior Angle of a Circle Theorem
6. $m \angle M J L=\frac{1}{2} m \overparen{K M}$	6. Inscribed Angle Theorem
7. $m \angle L=\frac{1}{2} m \overparen{J M}-\frac{1}{2} m \overparen{K M}$	7. Substitution
8. $m \angle L=\frac{1}{2}(m \overparen{J M}-m \overparen{K M})$	8. Distributive Property

Lesson 9.3 Skills Practice

24. Given: Tangents $\overleftrightarrow{S X}$ and $\overleftrightarrow{U X}$ intersect at point X.

Prove: $m \angle X=\frac{1}{2}(m \overparen{V T W}-m \overparen{V W})$

Statements

1. Tangents $\overleftrightarrow{S X}$ and $\overleftarrow{U X}$ intersect at point X.
2. Draw chord $\bar{V} W$
3. $m \angle S V W=m \angle X+m \angle V W X$
4. $m \angle X=m \angle S V W-m \angle V W X$
5. $m \angle S V W=\frac{1}{2} m \overparen{V T W}$
6. $m \angle V W X=\frac{1}{2} m \overparen{V W}$
7. $m \angle X=\frac{1}{2} m \overparen{V T W}-\frac{1}{2} m \overparen{V W}$
8. $m \angle X=\frac{1}{2}(m \overparen{V T W}-m \overparen{V W})$

Reasons

1. Given
2. Construction
3. Exterior Angle Theorem
4. Subtraction Property of Equality
5. Exterior Angle of a Circle Theorem
6. Exterior Angle of a Circle Theorem
7. Substitution
8. Distributive Property

Name Date

Use the diagram shown to determine the measure of each angle or arc.
25. Determine $m \widehat{F}$.
$m \angle K=20^{\circ}$
$m \overparen{G J}=80^{\circ}$

The measure of arc Fl is 120 degrees.

$$
\begin{aligned}
m \angle K & =\frac{1}{2}(m \overparen{F I}=m \overparen{G J}) \\
20 & =\frac{1}{2}(m \hat{F I}-80) \\
40 & =m \hat{F I}-80 \\
m \widehat{F I} & =120
\end{aligned}
$$

26. Determine $m \angle K L J$.
$m \overparen{K M}=120^{\circ}$
$m \overparen{J N}=100^{\circ}$

The measure of angle $K L J$ is 70 degrees.
First, I determined that the sum of the measures of arcs $K J$ and $M N$ is 140 degrees

$$
\begin{aligned}
m \overparen{K M}+m \overparen{J N}+m \overparen{K J}+m \overparen{M N} & =360 \\
120+100+m \overparen{K J}+m \overparen{M N} & =360 \\
220+m \overparen{K J}+m \overparen{M N} & =360 \\
m \overparen{K J}+m \overparen{M N} & =140
\end{aligned}
$$

Then, I calculated the measure of angle $K L J$.

$$
\begin{aligned}
m \angle K L J & =\frac{1}{2}(m \overparen{K J}+m \overparen{M N}) \\
& =\frac{1}{2}(140) \\
& =70
\end{aligned}
$$

27. Determine $m \angle X$.
$m \overparen{V W}=50^{\circ}$
$m \overparen{T U}=85^{\circ}$

The measure of angle X is 17.5 degrees.
To solve the problem, I established that angle X is an exterior angle of the smaller circle and calculated its measure.

$$
\begin{aligned}
m \angle X & =\frac{1}{2}(m \overparen{T U}-m \overparen{V W}) \\
& =\frac{1}{2}(85-50) \\
& =\frac{1}{2}(35) \\
& =17.5
\end{aligned}
$$

28. Determine $m \angle W Y X$.
$m \widehat{W U Y}=300^{\circ}$

The measure of angle $W Y X$ is 30 degrees.
To solve the problem, I calculated the measure of angle WYZ first. Then, I used the fact that angle $W Y Z$ and angle $W Y X$ are supplementary to calculate the measure of angle $W Y X$.

$$
\begin{aligned}
m \angle W Y Z & =\frac{1}{2}(m \widehat{W U Y}) \\
& =\frac{1}{2}(300) \\
& =150
\end{aligned}
$$

$$
\begin{aligned}
m \angle W Y X+m \angle W Y Z & =180 \\
m \angle W Y X+150 & =180 \\
m \angle W Y X & =30
\end{aligned}
$$

29. Determine $m \overparen{R S}$.
$m \overparen{U V}=30^{\circ}$
$m \angle R T S=80^{\circ}$

The measure of arc $R S$ is 130 degrees.

$$
\begin{aligned}
m \angle R T S & =\frac{1}{2}(m \overparen{R S}-m \overparen{U V}) \\
80 & =\frac{1}{2}(m \overparen{R S}+30) \\
160 & =m \overparen{R S}+30 \\
m \overparen{R S} & =130
\end{aligned}
$$

30. Determine $m \angle D$.
$m \overparen{Z X C}=150^{\circ}$
$m \overparen{C B}=30^{\circ}$

The measure of angle D is 75 degrees.
To solve the problem, I calculated the measure of arc ZAB first. Then, I calculated the measure of angle D.

$$
\begin{aligned}
& m \overparen{Z X C}+m \overparen{C B}+m \overparen{Z A B}=360 \\
& 150+30+m \overparen{Z A B}=360 \\
& 180+m \overparen{Z A B}=360 \\
& m \overparen{Z A B}=180 \\
& m \angle D= \frac{1}{2}(m \overparen{Z A B}-m \overparen{C B}) \\
&= \frac{1}{2}(180-30) \\
&= \frac{1}{2}(150) \\
&= 75
\end{aligned}
$$

Lesson 9.4 Skills Practice

Name
Date \qquad

Color Theory Chords

Vocabulary

Match each definition with its corresponding term.

1. Diameter-Chord Theorem g
2. Equidistant Chord Theorem c
3. Equidistant Chord
4. Congruent Chord-Congruent

Arc Theorem a
5. Congruent Chord-Congruent Arc

Converse Theorem d
6. segments of a chord b
a. If two chords of the same circle or congruent circles are congruent, then their corresponding arcs are congruent.
b. The segments formed on a chord when two chords of a circle intersect
c. If two chords of the same circle or congruent circles are congruent, then they are equidistant from the center of the circle.
d. If two arcs of the same circle or congruent circles are congruent, then their corresponding chords are congruent.
e. If two chords of the same circle or congruent circles are equidistant from the center of the circle, then the chords are congruent.
f. If two chords of a circle intersect, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments in the second chord.
g. If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and bisects the arc determined by the chord.

LeSSON 9.4 Skills Practice

Problem Set

Use the given information to answer each question. Explain your answer.

1. If diameter $\overline{B D}$ bisects $\overline{A C}$, what is the angle of intersection?

The angle of intersection is 90° because diameters that bisect chords are perpendicular bisectors.
2. If diameter $\overline{F H}$ intersects $\overline{E G}$ at a right angle, how does the length of $\overline{E I}$ compare to the length of $\overline{I G}$?

The length of $\overline{E l}$ is equal to the length of $\overline{I G}$ because a diameter that intersects a chord at a right angle is a perpendicular bisector.
3. How does the measure of $\overparen{K L}$ and $\overparen{L M}$ compare?

The measure of $\overparen{K L}$ is equal to the measure of $\overparen{L M}$ because a diameter that intersects a chord at a right angle bisects the arc formed by the chord.

Name
Date
4. If $\overline{K P} \cong \overline{L N}$, how does the length of $\overline{Q O}$ compare to the length of $\overline{R O}$?

The length of $\overline{Q O}$ is equal to the length of $\overline{R O}$ because congruent chords are the same distance from the center of the circle.
5. If $\overline{Y O} \cong \overline{Z O}$, what is the relationship between $\overline{T U}$ and $\overline{X V}$?

Chords $\overline{T U}$ and $\overline{X V}$ are congruent because chords that are the same distance from the center of the circle are congruent.
6. If $\overline{G O} \cong \overline{H O}$ and diameter $\overline{E J}$ is perpendicular to both, what is the relationship between $\overline{G F}$ and $\overline{H K}$?

The length of $\overline{\mathrm{GF}}$ is equal to the length of $\overline{H K}$ because chords the same distance from the center are congruent and chords that intersect a diameter at a right angle are bisected.

Determine each measurement.
7. If $\overline{B D}$ is a diameter, what is the length of $\overline{E C}$?

$$
E C=E A=5 \mathrm{~cm}
$$

8. If the length of $\overline{A B}$ is 13 millimeters, what is the length of $\overline{C D}$?

$$
C D=A B=13 \mathrm{~mm}
$$

9. If the length of $\overline{A B}$ is 24 centimeters, what is the length of $\overline{C D}$?

$$
C D=A B=24 \mathrm{~cm}
$$

10. If the length of $\overline{B F}$ is 32 inches, what is the length of $\overline{C H}$?

$C H=\frac{1}{2} B F=\frac{32}{2}=16$ inches

Name Date
11. If the measure of $\angle A O B=155^{\circ}$, what is the measure of $\angle D O C$?

$$
m \angle D O C=m \angle A O B=155^{\circ}
$$

12. If segment $\overline{A C}$ is a diameter, what is the measure of $\angle A E D$?

$m \angle A E D=90^{\circ}$

Compare each measurement. Explain your answer.
13. If $\overline{D E} \cong \overline{F G}$, how does the measure of $\overparen{D E}$ and $\overparen{F G}$ compare?

The measure of $\overparen{D E}$ is equal to the measure of $\overparen{F G}$ because the corresponding arcs of congruent chords are congruent.

LeSSON 9.4 Skills Practice

14. If $\overparen{K M} \cong \overparen{J L}$, how does the measure of $\overline{J L}$ and $\overline{K M}$ compare?

The measure of $\overline{K M}$ is equal to the measure of $\overline{J L}$ because the corresponding chords of congruent arcs are congruent.
15. If $\overline{Q R} \cong \overline{P S}$, how does the measure of $\overparen{Q P R}$ and $\overparen{P R S}$ compare?

The measure of $\overparen{Q P R}$ is equal to the measure of $\overparen{P R S}$ because the corresponding arcs of congruent chords are congruent.
16. If $\overparen{E D G} \cong \overparen{D E H}$, how does the measure of $\overline{E G}$ and $\overline{D H}$ compare?

The measure of $\overline{E G}$ is equal to the measure of $\overline{D H}$ because the corresponding chords of congruent arcs are congruent.

Name Date
17. If $\angle A O B \cong \angle D O C$, what is the relationship between $\overline{A B}$ and $\overline{D C}$?

Segment $A B$ is congruent to segment $D C$ because the corresponding chords of congruent arcs are congruent.
18. If $\angle E O H \cong \angle G O F$, what is the relationship between $\overparen{E H}$ and $\overparen{F G}$?

Arc EH is congruent to arc FG because the corresponding intercepted arcs of congruent central angles are congruent.

Use each diagram and the Segment Chord Theorem to write an equation involving the segments of the chords.

$D G \cdot G J=F G \cdot G H$
20.

$L Q \cdot Q N=P Q \cdot Q R$
21.

$T K \cdot K B=A K \cdot K V$

$E Y \cdot Y U=I Y \cdot Y A$

$S V \cdot V G=H V \cdot V C$
24.

$X J \cdot J V=L J \cdot J C$

Solar Eclipses
 Tangents and Secants

Vocabulary

Write the term from the box that best completes each statement.

external secant segment	Secant Segment Theorem	tangent segment
secant segment	Secant Tangent Theorem	Tangent Segment Theorem

1. $A(n)$ tangent segment is the segment that is formed from an exterior point of a circle to the point of tangency.
2. The Tangent Segment Theorem states that if two tangent segments are drawn from the same point on the exterior of the circle, then the tangent segments are congruent.
3. When two secants intersect in the exterior of a circle, the segment that begins at the point of intersection, continues through the circle, and ends on the other side of the circle is called a(n) \qquad secant segment
4. When two secants intersect in the exterior of a circle, the segment that begins at the point of intersection and ends where the secant enters the circle is called $a(n)$ \qquad external secant segment
5. The Secant Segment Theorem states that if two secants intersect in the exterior of a circle, then the product of the lengths of the secant segment and its external secant segment is equal to the product of the lengths of the second secant segment and its external secant segment.
6. The Secant Tangent Theorem_s states that if a tangent and a secant intersect in the exterior of a circle, then the product of the lengths of the secant segment and its external secant segment is equal to the square of the length of the tangent segment.

LeSSON 9.5 Skills Practice

Problem Set

Calculate the measure of each angle. Explain your reasoning.

1. If $\overline{O A}$ is a radius, what is the measure of $\angle O A B$?

The measure of angle $O A B$ is 90 degrees because a tangent line and the radius that ends at the point of tangency are perpendicular.
2. If $\overline{O D}$ is a radius, what is the measure of $\angle O D C$?

The measure of angle ODC is 90 degrees because a tangent line and the radius that ends at the point of tangency are perpendicular.
3. If $\overline{Y O}$ is a radius, what is the measure of $\angle X Y O$?

The measure of angle $X Y O$ is 90 degrees because a tangent line and the radius that ends at the point of tangency are perpendicular.
4. If $\overline{R S}$ is a tangent segment and $\overline{O S}$ is a radius, what is the measure of $\angle R O S$?

The measure of angle ROS is 55 degrees.
To determine the measure of angle ROS, I used the fact that the interior angles of a triangle sum to 180 degrees and that the measure of angle OSR is 90 degrees.

$$
\begin{aligned}
m \angle S R O+m \angle O S R+m \angle R O S & =180 \\
35+90+m \angle R O S & =180 \\
125+m \angle R O S & =180 \\
m \angle R O S & =55
\end{aligned}
$$

5. If $\overline{U T}$ is a tangent segment and $\overline{O U}$ is a radius, what is the measure of $\angle T O U$?

The measure of angle TOU is 67 degrees.
To determine the measure of angle TOU, I used the fact that the interior angles of a triangle sum to 180 degrees and that the measure of angle OUT is 90 degrees.

$$
\begin{aligned}
m \angle U T O+m \angle O U T+m \angle T O U & =180 \\
23+90+m \angle T O U & =180 \\
113+m \angle T O U & =180 \\
m \angle T O U & =67
\end{aligned}
$$

LESSON 9.5 Skills Practice

6. If $\overline{V W}$ is a tangent segment and $\overline{O V}$ is a radius, what is the measure of $\angle V W O$?

The measure of angle VWO is 18 degrees.
To determine the measure of angle VWO, I used the fact that the interior angles of a triangle sum to 180 degrees and that the measure of angle OVW is 90 degrees.

$$
\begin{aligned}
m \angle W O V+m \angle O V W+m \angle V W O & =180 \\
72+90+m \angle V W O & =180 \\
162+m \angle V W O & =180 \\
m \angle V W O & =18
\end{aligned}
$$

Write a statement to show the congruent segments.
7. $\overleftrightarrow{A C}$ and $\overleftrightarrow{B C}$ are tangent to circle O.

$\overline{A C} \cong \overline{C B}$
9. $\overleftrightarrow{R S}$ and $\overleftrightarrow{R T}$ are tangent to circle O.

$$
\overline{R S} \cong \overline{R T}
$$

8. $\overleftrightarrow{X Z}$ and $\overleftrightarrow{Z W}$ are tangent to circle O.

$\overline{X Z} \cong \overline{Z W}$
9. $\overleftrightarrow{M P}$ and $\overleftrightarrow{N P}$ are tangent to circle O.

$$
\overline{M P} \cong \overline{P N}
$$

\qquad Date
11. $\overleftrightarrow{D E}$ and $\overleftrightarrow{F E}$ are tangent to circle O.

$\overline{D E} \cong \overline{E F}$
12. $\overleftrightarrow{G H}$ and $\overleftrightarrow{G I}$ are tangent to circle O.

$$
\overline{G H} \cong \overline{G I}
$$

Calculate the measure of each angle. Explain your reasoning.
13. If $\overline{E F}$ and $\overline{G F}$ are tangent segments, what is the measure of $\angle E G F$?

The measure of angle EGF is 58 degrees.
I know triangle EFG is isosceles and its base angles are congruent.
Let x represent the measure of angle FEG and the measure of angle EGF.

$$
\begin{aligned}
m \angle F+x+x & =180 \\
64+2 x & =180 \\
2 x & =116 \\
x & =58
\end{aligned}
$$

Lesson 9.5 Skills Practice

14. If $\overline{H I}$ and \bar{J} are tangent segments, what is the measure of $\angle H J I$?

The measure of angle $H J I$ is 66 degrees.
I know triangle HJ is isosceles and its base angles are congruent.
Let x represent the measure of angle $H J I$ and the measure of angle $I H J$.

$$
\begin{aligned}
m \angle I+x+x & =180 \\
48+2 x & =180 \\
2 x & =132 \\
x & =66
\end{aligned}
$$

15. If $\overline{K M}$ and $\overline{L M}$ are tangent segments, what is the measure of $\angle K M L$?

The measure of angle $K M L$ is 54 degrees.
I know triangle $K M L$ is isosceles and its base angles are congruent.

$$
\begin{aligned}
m \angle M+m \angle M L K+m \angle L K M & =180 \\
m \angle M+63+63 & =180 \\
m \angle M+126 & =180 \\
m \angle M & =54
\end{aligned}
$$

Name
Date \qquad
16. If $\overline{N P}$ and $\overline{Q P}$ are tangent segments, what is the measure of $\angle N P Q$?

The measure of angle NPQ is 38 degrees.
I know triangle NPQ is isosceles and its base angles are congruent.

$$
\begin{aligned}
m \angle N P Q+m \angle P Q N+m \angle Q N P & =180 \\
m \angle N P Q+71+71 & =180 \\
m \angle N P Q+142 & =180 \\
m \angle N P Q & =38
\end{aligned}
$$

17. If $\overline{A F}$ and $\overline{V F}$ are tangent segments, what is the measure of $\angle A V F$?

The measure of angle AVF is 79 degrees.
I know triangle $A F V$ is isosceles and its base angles are congruent.
Let x represent the measure of angle FVA and the measure of angle VAF.

$$
\begin{aligned}
m \angle P+x+x & =180 \\
22+2 x & =180 \\
2 x & =158 \\
x & =79
\end{aligned}
$$

LESSON 9.5 Skills Practice

18. If $\overline{R T}$ and $\overline{M T}$ are tangent segments, what is the measure of $\angle R T M$?

The measure of angle RTM is 114 degrees.
I know triangle RTM is isosceles and its base angles are congruent.

$$
\begin{aligned}
m \angle R T M+m \angle T M R+m \angle M R T & =180 \\
m \angle R T M+33+33 & =180 \\
m \angle R T M+66 & =180 \\
m \angle R T M & =114
\end{aligned}
$$

Name two secant segments and two external secant segments for circle O.

Secant segments: $\overline{P T}$ and $\overline{Q T}$
External secant segments: $\overline{R T}$ and $\overline{S T}$
21.

Secant segments: $\overline{W U}$ and $\overline{U Y}$
External secant segments: $\overline{U V}$ and $\overline{U X}$
20.

Secant segments: $\overline{A E}$ and $\overline{B E}$
External secant segments: $\overline{C E}$ and $\overline{D E}$
22.

Secant segments: $\overline{L N}$ and $\overline{R N}$
External secant segments: $\overline{M N}$ and $\overline{N P}$

Name \qquad Date \qquad

Secant segments: $\overline{F J}$ and $\overline{G J}$
External secant segments: $\overline{H J}$ and $\overline{I J}$
24.

Secant segments: $\overline{J L}$ and $\overline{N L}$
External secant segments: $\overline{K L}$ and $\overline{M L}$

Use each diagram and the Secant Segment Theorem to write an equation involving the secant segments.

$R V \cdot T V=S V \cdot U V$
27.
$A D \cdot A B=A E \cdot A C$

26.

$$
M S \cdot Q S=N S \cdot R S
$$

$H K \cdot H I=H L \cdot H J$

$F A \cdot C A=E A \cdot B A$
30.

$X V \cdot W V=X Z \cdot X Y$

Name a tangent segment, a secant segment, and an external secant segment for circle O.

Tangent segment: $\overline{T U}$
Secant segment: $\overline{R T}$
External secant segment: $\overline{S T}$
33.

Tangent segment: $\overline{F D}$
Secant segment: $\overline{F E}$
External secant segment: $\overline{F G}$
32.

Tangent segment: $\overline{H K}$
Secant segment: $\overline{I K}$
External secant segment: $\overline{J K}$
34.

Tangent segment: $\overline{P Q}$
Secant segment: $\overline{S Q}$
External secant segment: $\bar{Q} \bar{R}$

Name \qquad Date \qquad

Tangent segment: $\overline{E F}$
Secant segment: $\overline{F H}$
External secant segment: $\overline{F G}$
36.

Tangent segment: $\overline{X W}$
Secant segment: $\overline{X Z}$
External secant segment: $\overline{X Y}$

Use each diagram and the Secant Tangent Theorem to write an equation involving the secant and tangent segments.

© Carnegie Learning
38.

$(V B)^{2}=B R \cdot B S$
40.

$(X A)^{2}=A T \cdot A B$
41.

$(V W)^{2}=W U \cdot W E$
42.

$(M C)^{2}=C Q \cdot C I$

