| Name | Date |  |
|------|------|--|
|      |      |  |

## Replacement for a Carpenter's Square **Inscribed and Circumscribed Triangles and Quadrilaterals**

## Vocabulary

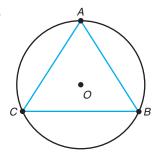
Answer each question.

- 1. How are inscribed polygons and circumscribed polygons different? Inscribed polygons are drawn inside of a circle with all vertices touching the circle. Circumscribed polygons are drawn outside of a circle with all sides tangent to the circle.
- 2. Describe how you can use the Inscribed Right Triangle-Diameter Theorem to show an inscribed triangle is a right triangle.
  - If an inscribed triangle has one side that is a diameter of the circle, then the triangle must be a right triangle.
- 3. What does the Converse of the Inscribed Right Triangle-Diameter Theorem help to show in a circle? If a right triangle is inscribed in a circle then one of the sides of the triangle must be the diameter.
- 4. What information about a quadrilateral inscribed in a circle does the Inscribed Quadrilateral-Opposite Angles Theorem give?
  - If a quadrilateral is inscribed in a circle, then the opposite angles are supplementary.

## **Problem Set**

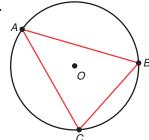
Draw a triangle inscribed in the circle through the three points. Then determine if the triangle is a right triangle.

1.



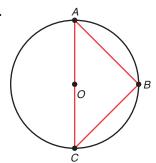
No. The triangle is not a right triangle. None of the sides of the triangle is a diameter of the circle.

2.



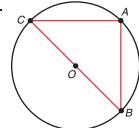
No. The triangle is not a right triangle. None of the sides of the triangle is a diameter of the circle.

3.



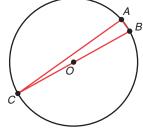
Yes. The triangle is a right triangle. Line segment AC is a diameter of the circle.

4.



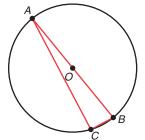
Yes. The triangle is a right triangle. Line segment BC is a diameter of the circle.

5.



Yes. The triangle is a right triangle. Line segment BC is a diameter of the circle.

6.

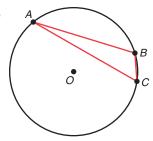


Yes. The triangle is a right triangle. Line segment AB is a diameter of the circle.

Date \_\_

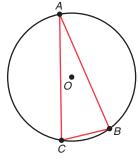
Name \_

7.



No. The triangle is not a right triangle. None of the sides of the triangle is a diameter of the circle.

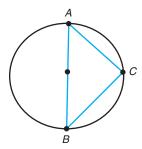
8.



No. The triangle is not a right triangle. None of the sides of the triangle is a diameter of the circle.

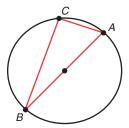
Draw a triangle inscribed in the circle through the given points. Then determine the measure of the indicated angle.

**9.** In  $\triangle ABC$ ,  $m \angle A = 55^{\circ}$ . Determine  $m \angle B$ .



 $m \angle B = 180^{\circ} - 90^{\circ} - 55^{\circ} = 35^{\circ}$ 

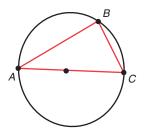
**10.** In  $\triangle ABC$ ,  $m \angle B = 38^{\circ}$ . Determine  $m \angle A$ .



 $m \angle A = 180^{\circ} - 90^{\circ} - 38^{\circ} = 52^{\circ}$ 

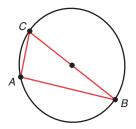
10

**11.** In  $\triangle ABC$ ,  $m \angle C = 62^{\circ}$ . Determine  $m \angle A$ .



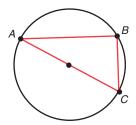
$$m \angle A = 180^{\circ} - 90^{\circ} - 62^{\circ} = 28^{\circ}$$

**12.** In  $\triangle ABC$ ,  $m \angle B = 26^{\circ}$ . Determine  $m \angle C$ .



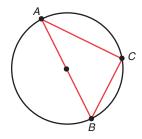
$$m \angle C = 180^{\circ} - 90^{\circ} - 26^{\circ} = 64^{\circ}$$

**13.** In  $\triangle ABC$ ,  $m \angle C = 49^{\circ}$ . Determine  $m \angle A$ .



$$m \angle A = 180^{\circ} - 90^{\circ} - 49^{\circ} = 41^{\circ}$$

**14.** In  $\triangle ABC$ ,  $m \angle B = 51^{\circ}$ . Determine  $m \angle A$ .

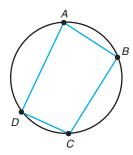


$$m \angle A = 180^{\circ} - 90^{\circ} - 51^{\circ} = 39^{\circ}$$

Name \_\_\_\_\_\_ Date \_\_\_\_\_

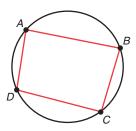
Draw a quadrilateral inscribed in the circle through the given four points. Then determine the measure of the indicated angle.

**15.** In quadrilateral *ABCD*,  $m \angle B = 81^{\circ}$ . Determine  $m \angle D$ .



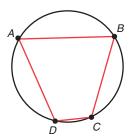
$$m \angle D = 180^{\circ} - 81^{\circ} = 99^{\circ}$$

**16.** In quadrilateral *ABCD*,  $m \angle C = 75^{\circ}$ . Determine  $m \angle A$ .



$$m \angle A = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

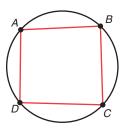
**17.** In quadrilateral *ABCD*,  $m \angle B = 112^{\circ}$ . Determine  $m \angle D$ .



© Carnegie Learning

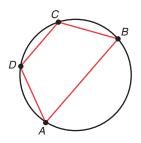
$$m \angle D = 180^{\circ} - 112^{\circ} = 68^{\circ}$$

**18.** In quadrilateral *ABCD*,  $m \angle D = 93^{\circ}$ . Determine  $m \angle B$ .



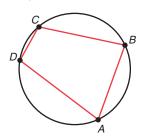
 $m \angle B = 180^{\circ} - 93^{\circ} = 87^{\circ}$ 

**19.** In quadrilateral *ABCD*,  $m \angle A = 72^{\circ}$ . Determine  $m \angle C$ .



 $m \angle C = 180^{\circ} - 72^{\circ} = 108^{\circ}$ 

**20.** In quadrilateral *ABCD*,  $m \angle B = 101^{\circ}$ . Determine  $m \angle D$ .

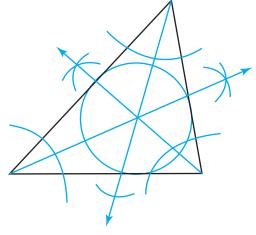


 $m \angle D = 180^{\circ} - 101^{\circ} = 79^{\circ}$ 

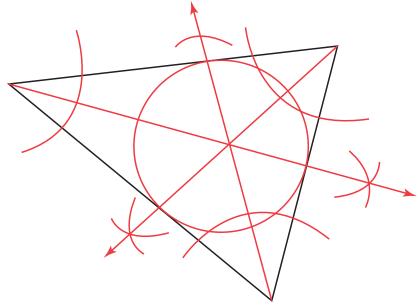
Name \_\_ Date \_\_\_\_\_

Construct a circle inscribed in each polygon.

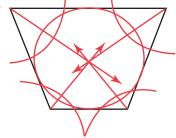
21.



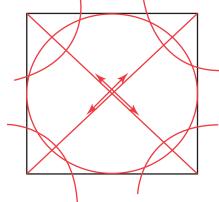
22.



24.



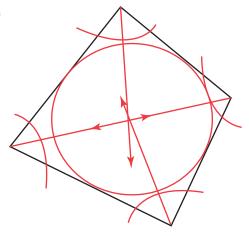
25.



Name \_

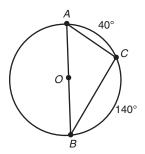
Date .

26.



Create a proof to prove each statement.

**27.** Given: Inscribed  $\triangle ABC$  in circle O,  $\widehat{mAC} = 40^{\circ}$ , and  $\widehat{mBC} = 140^{\circ}$ Prove:  $\overline{AB}$  is a diameter of circle O.



**Statements** 

1. 
$$\widehat{mAC} = 40^{\circ}, \widehat{mBC} = 140^{\circ}$$

2. 
$$\widehat{mAC} + \widehat{mBC} + \widehat{mAB} = 360^{\circ}$$

3. 
$$40^{\circ} + 140^{\circ} + m\widehat{AB} = 360^{\circ}$$

4. 
$$\widehat{mAB} = 180^{\circ}$$

5. 
$$m \angle C = \frac{1}{2} m \widehat{AB}$$

**6.** 
$$m∠C = 90^{\circ}$$

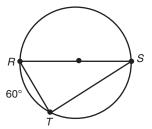
- 7.  $\triangle ABC$  is a right triangle with right angle C.
- **8.**  $\overline{AB}$  is the diameter of circle O.

**Reasons** 

- 1. Given
- 2. Arc Addition Postulate
- 3. Substitution
- 4. Subtraction Property of Equality
- 5. Definition of inscribed angle
- 6. Substitution
- 7. Definition of right triangle
- 8. Converse of Inscribed Right Triangle-**Diameter Theorem**

**28.** Given: Inscribed  $\triangle RST$  in circle O with diameter  $\overline{RS}$ , and  $\widehat{mRT} = 60^{\circ}$ 

Prove:  $\widehat{mST} = 120^{\circ}$ 



#### **Statements**

- 1. Inscribed  $\triangle RST$  in circle O with diameter  $\overline{RS}$ ,  $m\widehat{RT} = 60^{\circ}$
- **2.**  $\triangle RST$  is a right triangle with right angle  $\angle T$ .

3. 
$$m \angle T = \frac{1}{2} mRS$$

4. 
$$90^{\circ} = \frac{1}{2} \stackrel{?}{mRS}$$
  
5.  $\stackrel{?}{mRS} = 180^{\circ}$ 

5. 
$$mRS = 180^{\circ}$$

6. 
$$\widehat{mRS} + \widehat{mST} + \widehat{mRT} = 360^{\circ}$$

7. 
$$180^{\circ} + m\widehat{ST} + 60^{\circ} = 360^{\circ}$$

8. 
$$m\widehat{ST} = 120^{\circ}$$

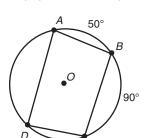
#### Reasons

- 2. Inscribed Right Triangle-Diameter Theorem
- 3. Definition of inscribed angle
- 4. Substitution

- 5. Multiplication Property of Equality
- 6. Arc Addition Postulate
- 7. Substitution
- 8. Subtraction Property of Equality

Name \_ Date.

**29.** Given: Inscribed quadrilateral *ABCD* in circle *O*,  $\widehat{mAB} = 50^{\circ}$ , and  $\widehat{mBC} = 90^{\circ}$ Prove:  $m \angle B = 110^{\circ}$ 



**Statements** 

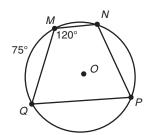
- 1. Inscribed quad ABCD in circle O,  $\widehat{mAB} = 50^{\circ}, \widehat{mBC} = 90^{\circ}$
- 2.  $\widehat{mAB} + \widehat{mBC} = \widehat{mABC}$
- 3.  $50^{\circ} + 90^{\circ} = m\widehat{ABC}$
- 4.  $140^{\circ} = m\widehat{ABC}$
- 5.  $m \angle D = \frac{1}{2} \widehat{mABC}$
- 6.  $m \angle D = \frac{1}{2}(140^{\circ}) = 70^{\circ}$
- 7.  $\angle D$  and  $\angle B$  are supplementary
- 8.  $m \angle D + m \angle B = 180^{\circ}$
- 9.  $70^{\circ} + m \angle B = 180^{\circ}$
- **10.**  $m \angle B = 110^{\circ}$

Reasons

- 2. Angle Addition Postulate
- 3. Substitution

- 4. Addition Property of Equality
- 5. Inscribed angle
- 6. Substitution
- 7. Inscribed Quadrilateral-Opposite **Angles Theorem**
- 8. Definition of supplementary
- 9. Substitution
- 10. Subtraction Property of Equality

**30.** Given: Inscribed quadrilateral MNPQ in circle O,  $mMQ = 75^{\circ}$ , and  $m \angle NMQ = 120^{\circ}$ Prove:  $\widehat{mMN} = 45^{\circ}$ 



#### **Statements**

- 1. Inscribed quad MNPQ in circle O,  $\overrightarrow{mMQ} = 75^{\circ}, \ m \angle NMQ = 120^{\circ}$
- 2.  $\angle M$  and  $\angle P$  are supplementary
- 3.  $m \angle M + m \angle P = 180^{\circ}$
- 4.  $120^{\circ} + m \angle P = 180^{\circ}$
- 5.  $m \angle P = 60^{\circ}$
- 6.  $m \angle P = \frac{1}{2} m \widehat{QMN}$
- 7.  $60^{\circ} = \frac{1}{2} m \widehat{QMN}$
- 8.  $120^{\circ} = m\widehat{QMN}$
- 9.  $\widehat{mQMN} = \widehat{mQM} + \widehat{nMN}$
- 10.  $120^{\circ} = 75^{\circ} + m\widehat{MN}$
- 11.  $45^{\circ} = m\widehat{MN}$

#### Reasons

- 2. Inscribed Quadrilateral-Opposite **Angles Theorem**
- 3. Definition of supplementary
- 4. Substitution

- 5. Subtraction Property of Equality
- 6. Inscribed angle
- 7. Substitution
- 8. Multiplication Property of Equality
- 9. Arc Addition Postulate
- 10. Substitution
- 11. Subtraction Property of Equality

Date.

**31.** Given:  $\widehat{mAB} = 50^{\circ}$ ,  $\widehat{mBC} = 90^{\circ}$ , and  $\widehat{mCD} = 90^{\circ}$ Prove:  $m \angle BCD = 90^{\circ}$ 

Name \_

**Statements** 

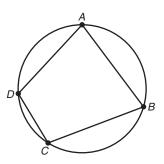
- 1.  $\widehat{mAB} + \widehat{mBC} + \widehat{mCD} + \widehat{mAD} = 360^{\circ}$
- 2.  $50^{\circ} + 90^{\circ} + 90^{\circ} + m\widehat{AD} = 360^{\circ}$
- 3.  $230^{\circ} + m\widehat{AD} = 360^{\circ}$
- 4.  $m\widehat{AD} = 130^{\circ}$
- 5.  $m \angle BCD = \frac{1}{2} m \widehat{BAD}$
- 6.  $m \angle BCD = \frac{1}{2} (m\widehat{AB} + m\widehat{AD})$
- 7.  $m \angle BCD = \frac{1}{2}(50^{\circ} + 130^{\circ})$
- 8.  $m \angle BCD = \frac{1}{2}(180^{\circ})$
- 9.  $m \angle BCD = 90^{\circ}$

Reasons

- 1.  $\widehat{AB}$ ,  $\widehat{BC}$ ,  $\widehat{CD}$ , and  $\widehat{AD}$  form the circle
- 2. Substitution
- 3. Addition
- 4. Subtraction Property of Equality
- 5. Definition of measure of inscribed angle
- 6. Substitution Property of Equality
- 7. Substitution Property of Equality
- 8. Addition
- 9. Multiplication

**32.** Given: ∠BAD and ∠ADC are supplementary angles

Prove:  $m \angle BAD = m \angle ABC$ 



#### **Statements**

- 1.  $m \angle BAD + m \angle ADC = 180^{\circ}$
- 2.  $m \angle ADC = 180^{\circ} m \angle BAD$
- 3.  $m \angle ADC + m \angle ABC = 180^{\circ}$
- 4.  $180^{\circ} m \angle BAD + m \angle ABC = 180^{\circ}$
- 5.  $-m \angle BAD + m \angle ABC = 0^{\circ}$
- 6.  $m \angle BAD = m \angle ABC$

#### Reasons

2. Subtraction Property of Equality

- 3. Opposite angles of a quadrilateral inscribed in a circle are supplementary.
- 4. Substitution Property of Equality
- 5. Subtraction Property of Equality
- 6. Addition Property of Equality

# Gears Arc Length

## **Vocabulary**

Define the key term in your own words.

1. arc length

Arc length is a portion of the circumference of a circle.

2. radian

A radian is the measure of a central angle whose arc length is the same as the radius of the circle.

## **Problem Set**

Calculate the ratio of the length of each arc to the circle's circumference.

**1.** The measure of  $\widehat{AB}$  is 40°.

$$\frac{40^{\circ}}{360^{\circ}} = \frac{1}{9}$$

The arc is  $\frac{1}{9}$  of the circle's circumference.

**3.** The measure of  $\widehat{EF}$  is 120°.

$$\frac{120^{\circ}}{360^{\circ}} = \frac{1}{3}$$

The arc is  $\frac{1}{3}$  of the circle's circumference.

**5.** The measure of  $\widehat{IJ}$  is 105°.

$$\frac{105^{\circ}}{360^{\circ}} = \frac{7}{24}$$

The arc is  $\frac{7}{24}$  of the circle's circumference.

**2.** The measure of  $\widehat{CD}$  is 90°.

$$\frac{90^{\circ}}{360^{\circ}} = \frac{1}{4}$$

The arc is  $\frac{1}{4}$  of the circle's circumference.

**4.** The measure of  $\widehat{GH}$  is 150°.

$$\frac{150^{\circ}}{360^{\circ}} = \frac{5}{12}$$

The arc is  $\frac{5}{12}$  of the circle's circumference.

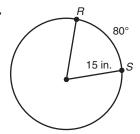
**6.** The measure of  $\widehat{KL}$  is 75°.

$$\frac{75^{\circ}}{360^{\circ}} = \frac{5}{24}$$

The arc is  $\frac{5}{24}$  of the circle's circumference.

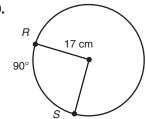
Write an expression that you can use to calculate the length of  $\widehat{RS}$ . You do not need to simplify the expression.

7.



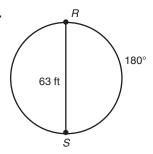
$$\frac{80}{360} \cdot 2\pi (15)$$

9.



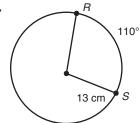
$$\frac{90}{360} \cdot 2\pi(17)$$

11.



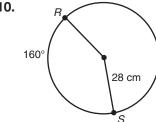
$$\frac{180}{360} \cdot 2\pi(31.5)$$

8.



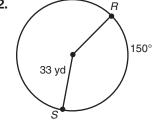
$$\frac{110}{360} \cdot 2\pi(13)$$

10.



$$\frac{160}{360} \cdot 2\pi(28)$$

12.



$$\frac{150}{360} \cdot 2\pi(33)$$

Calculate each arc length. Write your answer in terms of  $\pi$ .

**13.** If the measure of  $\widehat{AB}$  is 45° and the radius is 12 meters, what is the arc length of  $\widehat{AB}$ ?

$$C=2\pi(12)=24\pi$$

Fraction of C: 
$$\frac{45^{\circ}}{360^{\circ}} = \frac{1}{8}$$

Arc length of 
$$\widehat{AB}$$
:  $\frac{1}{8}(24\pi) = 3\pi$ 

The arc length of  $\widehat{AB}$  is  $3\pi$  meters.

**14.** If the measure of  $\widehat{CD}$  is 120° and the radius is 15 centimeters, what is the arc length of  $\widehat{CD}$ ?

$$C = 2\pi(15) = 30\pi$$

Fraction of C: 
$$\frac{120^{\circ}}{360^{\circ}} = \frac{1}{3}$$

Arc length of 
$$\widehat{CD}$$
:  $\frac{1}{3}(30\pi) = 10\pi$ 

The arc length of  $\widehat{CD}$  is  $10\pi$  cm.

**15.** If the measure of  $\widehat{EF}$  is 60° and the radius is 8 inches, what is the arc length of  $\widehat{EF}$ ?

$$C = 2\pi(8) = 16\pi$$

Fraction of C: 
$$\frac{60^{\circ}}{360^{\circ}} = \frac{1}{6}$$

Arc length of 
$$\widehat{EF}$$
:  $\frac{1}{6}(16\pi) = \frac{16}{6}\pi = \frac{8}{3}\pi$ 

The arc length of  $\widehat{EF}$  is  $\frac{8}{3}\pi$  inches.

**16.** If the measure of  $\widehat{GH}$  is 30° and the radius is 6 meters, what is the arc length of  $\widehat{GH}$ ?

$$C=2\pi(6)=12\pi$$

Fraction of C: 
$$\frac{30^{\circ}}{360^{\circ}} = \frac{1}{12}$$

Arc length of 
$$\widehat{GH}$$
:  $\frac{1}{12}(12\pi) = \frac{12}{12}\pi = \pi$ 

The arc length of  $\widehat{GH}$  is  $\pi$  meters.

17. If the measure of  $\widehat{IJ}$  is 80° and the diameter is 10 centimeters, what is the arc length of  $\widehat{IJ}$ ?

$$C=\pi(10)=10\pi$$

Fraction of C: 
$$\frac{80^{\circ}}{360^{\circ}} = \frac{2}{9}$$

Arc length of 
$$\widehat{IJ}$$
:  $\frac{2}{9}(10\pi) = \frac{20\pi}{9}$ 

The arc length of 
$$\widehat{IJ}$$
 is  $\frac{20\pi}{9}$  cm.

**18.** If the measure of  $\widehat{KL}$  is 15° and the diameter is 18 feet, what is the arc length of  $\widehat{KL}$ ?

$$C=\pi(18)=18\pi$$

Fraction of C: 
$$\frac{15^{\circ}}{360^{\circ}} = \frac{1}{24}$$

Arc length of 
$$\widehat{KL}$$
:  $\frac{1}{24}(18\pi) = \frac{18}{24}\pi = \frac{3}{4}\pi$ 

The arc length of  $\widehat{KL}$  is  $\frac{3}{4}\pi$  ft.

**19.** If the measure of  $\widehat{MN}$  is 75° and the diameter is 20 millimeters, what is the arc length of  $\widehat{MN}$ ?

$$C = \pi(20) = 20\pi$$

Fraction of C: 
$$\frac{75^{\circ}}{360^{\circ}} = \frac{5}{24}$$

Arc length of 
$$\widehat{MN}$$
:  $\frac{5}{24}(20\pi) = \frac{100}{24}\pi = \frac{25}{6}\pi$ 

The arc length of  $\widehat{MN}$  is  $\frac{25}{6}\pi$  mm.

**20.** If the measure of  $\widehat{OP}$  is 165° and the diameter is 21 centimeters, what is the arc length of  $\widehat{OP}$ ?

$$C = \pi(21) = 21\pi$$

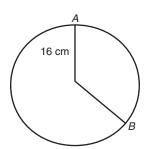
Fraction of C: 
$$\frac{165^{\circ}}{360^{\circ}} = \frac{11}{24}$$

Arc length of 
$$\widehat{OP}$$
:  $\frac{11}{24}(21\pi) = \frac{231}{24}\pi = \frac{77}{8}\pi$ 

The arc length of 
$$\widehat{OP}$$
 is  $\frac{77}{8}\pi$  meters.

Calculate each arc length. Write your answer in terms of  $\pi$ .

**21.** If the measure of  $\widehat{AB}$  is 135°, what is the arc length of  $\widehat{AB}$ ?



$$C = 2\pi(16) = 32\pi$$

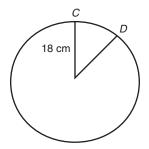
Fraction of C: 
$$\frac{135^{\circ}}{360^{\circ}} = \frac{3}{8}$$

Arc length of 
$$\widehat{AB}$$
:  $\frac{3}{8}(32\pi) = \frac{96}{8}\pi = 12\pi$ 

The arc length of  $\widehat{AB}$  is  $12\pi$  cm.

Name Date

**22.** If the measure of  $\widehat{CD}$  is 45°, what is the arc length of  $\widehat{CD}$ ?



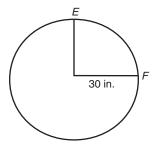
$$C=2\pi(18)=36\pi$$

Fraction of C: 
$$\frac{45^{\circ}}{360^{\circ}} = \frac{1}{8}$$

Arc length of 
$$\widehat{\mathit{CD}}$$
:  $\frac{1}{8}(36\pi) = \frac{36}{8}\pi = \frac{9}{2}\pi$ 

The arc length of  $\widehat{\mathit{CD}}$  is  $\frac{9}{2}\pi$  cm.

**23.** If the measure of  $\widehat{EF}$  is 90°, what is the arc length of  $\widehat{EF}$ ?



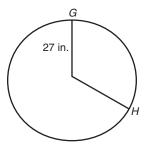
$$C=2\pi(30)=60\pi$$

Fraction of C: 
$$\frac{90^{\circ}}{360^{\circ}} = \frac{1}{4}$$

Arc length of 
$$\widehat{EF}$$
:  $\frac{1}{4}(60\pi) = \frac{60}{4}\pi = 15\pi$ 

The arc length of  $\widehat{EF}$  is  $15\pi$  in.

**24.** If the measure of  $\widehat{GH}$  is 120°, what is the arc length of  $\widehat{GH}$ ?



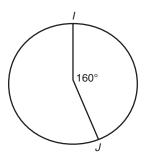
$$C=2\pi(27)=54\pi$$

Fraction of C: 
$$\frac{120^{\circ}}{360^{\circ}} = \frac{1}{3}$$

Arc length of 
$$\widehat{GH}$$
:  $\frac{1}{3}(54\pi) = \frac{54}{3}\pi = 18\pi$ 

The arc length of  $\widehat{GH}$  is  $18\pi$  in.

**25.** If the length of the radius is 4 centimeters, what is the arc length of  $\widehat{IJ}$ ?



$$C=2\pi(4)=8\pi$$

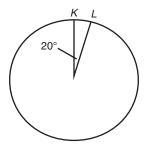
Fraction of C: 
$$\frac{160^{\circ}}{360^{\circ}} = \frac{4}{9}$$

Arc length of 
$$\widehat{IJ}$$
:  $\frac{4}{9}(8\pi) = \frac{32}{9}\pi$ 

The arc length of  $\widehat{IJ}$  is  $\frac{32}{9}\pi$  cm.

Name Date.

**26.** If the length of the radius is 7 centimeters, what is the arc length of  $\widehat{KL}$ ?



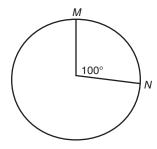
$$C=2\pi(7)=14\pi$$

Fraction of C: 
$$\frac{20^{\circ}}{360^{\circ}} = \frac{1}{18}$$

Arc length of 
$$\widehat{KL}$$
:  $\frac{1}{18}(14\pi) = \frac{14}{18}\pi = \frac{7}{9}\pi$ 

The arc length of  $\widehat{KL}$  is  $\frac{7}{9}\pi$  cm.

**27.** If the length of the radius is 11 centimeters, what is the arc length of  $\widehat{MN}$ ?



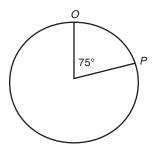
$$C=2\pi(11)=22\pi$$

Fraction of C: 
$$\frac{100^{\circ}}{360^{\circ}} = \frac{5}{18}$$

Arc length of 
$$\widehat{MN}$$
:  $\frac{5}{18}(22\pi) = \frac{110}{18}\pi = \frac{55}{9}\pi$ 

The arc length of  $\widehat{MN}$  is  $\frac{55}{9}\pi$  cm.

**28.** If the length of the radius is 17 centimeters, what is the arc length of  $\widehat{OP}$ ?



$$C=2\pi(17)=34\pi$$

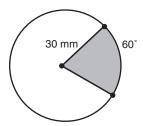
Fraction of C: 
$$\frac{75^{\circ}}{360^{\circ}} = \frac{5}{24}$$

Arc length of 
$$\widehat{OP}$$
:  $\frac{5}{24}(34\pi) = \frac{170}{24}\pi = \frac{85}{12}\pi$ 

The arc length of 
$$\widehat{OP}$$
 is  $\frac{85}{12}\pi$  cm.

Use the given information to answer each question. Where necessary, use 3.14 to approximate  $\pi$ .

29. Determine the perimeter of the shaded region.

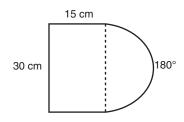


Arc length:  $\frac{60}{360} \times 2(3.14)(30) = 31.4 \text{ mm}$ 

Perimeter of shaded region: 31.4 + 30 + 30 = 91.4 mm

Name \_ Date \_

30. Determine the perimeter of the figure below.



Arc length:  $\frac{180}{360} \times 2(3.14)(15) = 47.1$  cm

Perimeter of figure: 2(15) + 30 + 47.1 = 107.1 cm

31. A semicircular cut was taken from the rectangle shown. Determine the perimeter of the shaded region.



Arc length:  $\frac{180}{360} \times 2(3.14)(30) = 94.2 \text{ ft}$ 

Perimeter of shaded region: 2(80) + 60 + 94.2 = 314.2 ft

**32.** A circle has a circumference of 81.2 inches. What is the radius of the circle?

 $C=2\pi r$ 

 $81.2 = 2\pi r$ 

81.2 = r

 $2\pi$ 

Carnegie Learning

12.9 ≈ *r* 

The radius of the circle is about 12.9 inches.

33. Bella used a tape measure and determined the circumference of a flagpole to be 6.2 inches. What is the radius of the flagpole?

$$C=2\pi r$$

$$6.2 = 2\pi r$$

$$6.2 = r$$

$$2\pi$$

 $1 \approx r$ 

The radius of the flagpole is about 1 inch.

34. Carla used a string and a tape measure and determine the circumference of a circular cup to be 12.56 inches. What is the radius of the cup?

$$C = 2\pi r$$

$$12.56 = 2\pi r$$

$$12.56 = r$$

$$2\pi$$

The radius of the cup is about 2 inches.

Solve for each measure given the information.

**35.** If  $\theta = \frac{\pi}{3}$  and r = 3, what is the length of the intercepted arc?

$$\theta = \frac{s}{r}$$

$$\frac{\pi}{2} = \frac{5}{2}$$

$$s = \pi$$

**36.** If r = 8 and the intercepted arc length is  $6\pi$ , what is the measure of the central angle?

$$\theta = \frac{s}{r}$$

$$\theta = \frac{6\pi}{8}$$

$$\theta = \frac{3}{4}\pi$$

37. The measure of a central angle is 80°. The length of the radius is 40 mm. Determine the arc length using the formula  $\frac{\text{measure of angle}}{360^{\circ}} \cdot 2\pi r$ .

$$\theta = \frac{s}{r}$$

$$\frac{2\pi}{3} = \frac{s}{6}$$

$$s = 4\pi$$

Date \_

**38.** If r = 6 and the intercepted arc length is  $4\pi$ , what is the measure of the central angle?

$$\theta = \frac{s}{r}$$

$$\theta = \frac{4\pi}{6}$$

$$\theta = \frac{2}{3}\pi$$

39. The measure of a central angle is 80°. The length of the radius is 40 mm. Determine the arc length using the formula  $\frac{\text{measure of angle}}{360^{\circ}} \cdot 2\pi r$ .

Arc length = 
$$\frac{80^{\circ}}{360^{\circ}} \cdot 2\pi(40)$$
  
=  $\frac{2}{9} \cdot 80\pi$   
=  $\frac{160\pi}{9}$  mm

40. The measure of a central angle is 110°. The length of the radius is 15 ft. Determine the arc length using the formula  $\frac{\text{measure of angle}}{360^{\circ}} \cdot 2\pi r$ .

Arc length = 
$$\frac{110^{\circ}}{360^{\circ}} \cdot 2\pi(15)$$
  
=  $\frac{11}{36} \cdot 30\pi$   
=  $\frac{55\pi}{6}$  ft

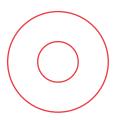
# **Playing Darts**

## Sectors and Segments of a Circle

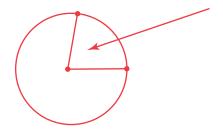
## **Vocabulary**

Draw an example of each term.

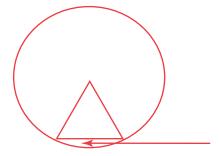
1. concentric circles



2. sector of a circle



3. segment of a circle

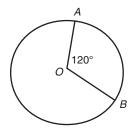


## 10

## **Problem Set**

Calculate the area of each sector. Write your answer in terms of  $\pi$ .

1. If the radius of the circle is 9 centimeters, what is the area of sector AOB?



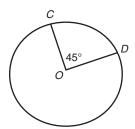
Total area of the circle =  $\pi(9^2)$  =  $81\pi$  cm<sup>2</sup>

Sector *AOB*'s fraction of the circle =  $\frac{120^{\circ}}{360^{\circ}} = \frac{1}{3}$ 

Area of sector  $AOB = \frac{1}{3}(81\pi) = 27\pi$ 

The area of sector AOB is  $27\pi$  cm<sup>2</sup>.

2. If the radius of the circle is 16 meters, what is the area of sector COD?



Total area of the circle =  $\pi(16^2)$  =  $256\pi$  m<sup>2</sup>

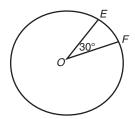
Sector *COD*'s fraction of the circle =  $\frac{45^{\circ}}{360^{\circ}} = \frac{1}{8}$ 

Area of sector  $COD = \frac{1}{8}(256\pi) = 32\pi$ 

The area of sector COD is  $32\pi$  m<sup>2</sup>.

Name

- Date \_
- 3. If the radius of the circle is 15 feet, what is the area of sector EOF?



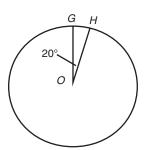
Total area of the circle =  $\pi(15^2)$  =  $225\pi$  ft<sup>2</sup>

Sector *EOF*'s fraction of the circle =  $\frac{30^{\circ}}{360^{\circ}} = \frac{1}{12}$ 

Area of sector  $EOF = \frac{1}{12}(225\pi) = \frac{225}{12}\pi = \frac{75}{4}\pi$ 

The area of sector *EOF* is  $\frac{75}{4}\pi$  ft<sup>2</sup>.

4. If the radius of the circle is 10 inches, what is the area of sector GOH?



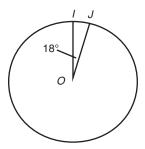
Total area of the circle =  $\pi(10^2)$  =  $100\pi$  inches<sup>2</sup>

Sector GOH's fraction of the circle =  $\frac{20^{\circ}}{360^{\circ}} = \frac{1}{18}$ 

Area of sector  $GOH = \frac{1}{18}(100\pi) = \frac{100}{18}\pi = \frac{50}{9}\pi$ 

The area of sector GOH is  $\frac{50}{9}\pi$  inches<sup>2</sup>.

**5.** If the radius of the circle is 32 centimeters, what is the area of sector *IOJ*?



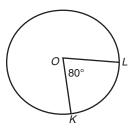
Total area of the circle =  $\pi(32^2)$  =  $1024\pi$  cm<sup>2</sup>

Sector *IOJ*'s fraction of the circle =  $\frac{18^{\circ}}{360^{\circ}} = \frac{1}{20}$ 

Area of sector  $IOJ = \frac{1}{20}(1024\pi) = \frac{1024}{20}\pi = \frac{256}{5}\pi$ 

The area of sector IOJ is  $\frac{256}{5}\pi$  cm<sup>2</sup>.

**6.** If the radius of the circle is 20 millimeters, what is the area of sector *KOL*?



Total area of the circle =  $\pi(20^{\circ})$  =  $400\pi$  mm<sup>2</sup>

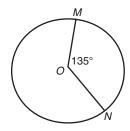
Sector KOL's fraction of the circle =  $\frac{80^{\circ}}{360^{\circ}} = \frac{2}{9}$ 

Area of sector  $KOL = \frac{2}{9}(400\pi) = \frac{800}{9}\pi$ 

The area of sector KOL is  $\frac{800}{9}\pi$  mm<sup>2</sup>.

Date \_

7. If the radius of the circle is 24 centimeters, what is the area of sector MON?



Name

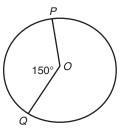
Total area of the circle =  $\pi(24^2)$  = 576 $\pi$  cm<sup>2</sup>

Sector *MON*'s fraction of the circle =  $\frac{135^{\circ}}{360^{\circ}} = \frac{3}{8}$ 

Area of sector  $MON = \frac{3}{8}(576\pi) = \frac{1728}{8}\pi = 216\pi$ 

The area of sector MON is  $216\pi$  cm<sup>2</sup>.

8. If the radius of the circle is 21 meters, what is the area of sector POQ?



Total area of the circle =  $\pi(21^2)$  =  $441\pi$  m<sup>2</sup>

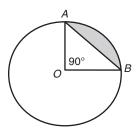
Sector *POQ*'s fraction of the circle  $=\frac{150^{\circ}}{360^{\circ}} = \frac{5}{12}$ 

Area of sector  $POQ = \frac{5}{12}(441\pi) = \frac{2205}{12}\pi = \frac{735}{4}\pi$ 

The area of sector POQ is  $\frac{735}{4}\pi$  m<sup>2</sup>.

Calculate the area of each segment. Round your answer to the nearest tenth, if necessary. Use 3.14 to estimate  $\pi$ .

9. If the radius of the circle is 6 centimeters, what is the area of the shaded segment?



Total area of the circle =  $\pi(6^2)$  =  $36\pi$  cm<sup>2</sup>

Sector *AOB*'s fraction of the circle =  $\frac{90^{\circ}}{360^{\circ}} = \frac{1}{4}$ 

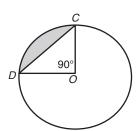
Area of sector  $AOB = \frac{1}{4}(36\pi) = 9\pi \text{ cm}^2$ 

Area of  $\triangle AOB = \frac{1}{2}(6 \cdot 6) = 18 \text{ cm}^2$ 

Area of the segment:  $9\pi - 18 \approx 28.3 - 18 = 10.3$ 

The area of the shaded segment is approximately 10.3 cm<sup>2</sup>.

10. If the radius of the circle is 14 inches, what is the area of the shaded segment?



Total area of the circle =  $\pi(14^2)$  =  $196\pi$  inches<sup>2</sup>

Sector COD's fraction of the circle =  $\frac{90^{\circ}}{360^{\circ}} = \frac{1}{4}$ 

Area of sector  $COD = \frac{1}{4}(196\pi) = 49\pi \text{ inches}^2$ 

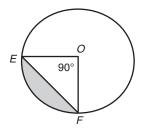
Area of  $\triangle COD = \frac{1}{2}(14 \cdot 14) = 98 \text{ inches}^2$ 

Area of the segment:  $49\pi - 98 \approx 153.9 - 98 = 55.9$ 

The area of the shaded segment is approximately 55.9 inches<sup>2</sup>.

Name Date.

11. If the radius of the circle is 17 feet, what is the area of the shaded segment?



Total area of the circle =  $\pi(17^2)$  =  $289\pi$  ft<sup>2</sup>

Sector *EOF*'s fraction of the circle =  $\frac{90^{\circ}}{360^{\circ}} = \frac{1}{4}$ 

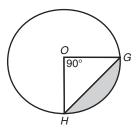
Area of sector  $EOF = \frac{1}{4}(289\pi) = 72.5\pi \text{ ft}^2$ 

Area of  $\triangle EOF = \frac{1}{2}(17 \cdot 17) = 144.5 \text{ ft}^2$ 

Area of the segment:  $72.25\pi - 144.5 \approx 226.9 - 144.5 = 82.4 \text{ ft}^2$ 

The area of the shaded segment is approximately 82.4 ft<sup>2</sup>.

12. If the radius of the circle is 22 centimeters, what is the area of the shaded segment?



Total area of the circle =  $\pi(22^2)$  = 484 $\pi$  cm<sup>2</sup>

Sector *GOH*'s fraction of the circle =  $\frac{90^{\circ}}{360^{\circ}} = \frac{1}{4}$ 

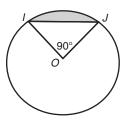
Area of sector  $GOH = \frac{1}{4}(484\pi) = 121\pi \text{ cm}^2$ 

Area of  $\triangle GOH = \frac{1}{2}(22 \cdot 22) = 242 \text{ cm}^2$ 

Area of the segment:  $121\pi - 242 \approx 379.9 - 242 = 137.9$ 

The area of the shaded segment is approximately 137.9 cm<sup>2</sup>.

13. If the radius of the circle is 25 meters, what is the area of the shaded segment?



Total area of the circle =  $\pi(25^2)$  =  $625\pi$  m<sup>2</sup>

Sector *IOJ*'s fraction of the circle =  $\frac{90^{\circ}}{360^{\circ}} = \frac{1}{4}$ 

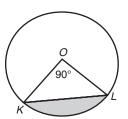
Area of sector  $IOJ = \frac{1}{4}(625\pi) = 156.25\pi \text{ m}^2$ 

Area of  $\triangle IOJ = \frac{1}{2}(25 \cdot 25) = 312.5 \text{ m}^2$ 

Area of the segment:  $156.25\pi - 312.5 \approx 490.6 - 312.5 = 178.1$ 

The area of the shaded segment is approximately 178.1 m<sup>2</sup>.

14. If the radius of the circle is 30 centimeters, what is the area of the shaded segment?



Total area of the circle =  $\pi(30^2)$  =  $900\pi$  cm<sup>2</sup>

Sector *KOL*'s fraction of the circle =  $\frac{90^{\circ}}{360^{\circ}} = \frac{1}{4}$ 

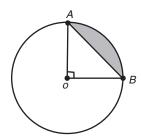
Area of sector  $KOL = \frac{1}{4}(900\pi) = 225\pi \text{ cm}^2$ 

Area of  $\triangle KOL = \frac{1}{2}(30 \cdot 30) = 450 \text{ cm}^2$ 

Area of the segment:  $225\pi - 450 \approx 706.5 - 450 = 256.5$ 

The area of the shaded segment is approximately 256.5 cm<sup>2</sup>.

In circle O below,  $\widehat{mAB} = 90^{\circ}$ . Use the given information to determine the length of the radius of circle O.



**15.** If the area of the segment is  $16\pi - 32$  square feet, what is the length of the radius of circle O?

$$16\pi = \frac{90^{\circ}}{360^{\circ}}(\pi r^{2})$$
$$16\pi = \frac{1}{4}(\pi r^{2})$$

$$64 = r^2$$

$$8 = r$$

The length of the radius is 8 feet.

**16.** If the area of the segment is  $25\pi - 50$  square inches, what is the length of the radius of circle O?

$$25\pi = \frac{90^{\circ}}{360^{\circ}}(\pi r^2)$$

$$25\pi = \frac{1}{4}(\pi r^2)$$

$$100 = r^2$$

$$10 = r$$

The length of the radius is 10 inches.

17. If the area of the segment is  $\pi - 2$  square meters, what is the length of the radius of circle O?

$$\pi = \frac{90^{\circ}}{360^{\circ}}(\pi r^2)$$

$$\pi = \frac{1}{4}(\pi r^2)$$

$$4 = r^2$$

$$2 = r$$

The length of the radius is 2 meters.

**18.** If the area of the segment is  $56.25\pi - 112.5$  square yards, what is the length of the radius of circle O?

$$56.25\pi = \frac{90^{\circ}}{360^{\circ}}(\pi r^{2})$$

$$56.25\pi = \frac{1}{4}(\pi r^{2})$$

$$225 = r^{2}$$

$$15 = r$$

The length of the radius is 15 yards.

19. If the area of the segment is  $121\pi - 242$  square feet, what is the length of the radius of circle O?

$$121\pi = \frac{90^{\circ}}{360^{\circ}}(\pi r^{2})$$

$$121\pi = \frac{1}{4}(\pi r^{2})$$

$$484 = r^{2}$$

$$22 = r$$

The length of the radius is 22 feet.

**20.** If the area of the segment is  $90.25\pi-180.5$  square millimeters, what is the length of the radius of circle O?

$$90.25\pi = \frac{90^{\circ}}{360^{\circ}}(\pi r^{2})$$

$$90.25\pi = \frac{1}{4}(\pi r^{2})$$

$$361 = r^{2}$$

$$19 = r$$

The length of the radius is 19 millimeters.

| _ |  |  |  |
|---|--|--|--|

## Circle K. Excellent! **Circle Problems**

## **Vocabulary**

Name \_\_\_

Define the key term in your own words.

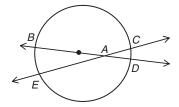
1. linear velocity Linear velocity is an amount of distance over a specified amount of time.

2. angular velocity Angular velocity is an amount of angle movement (in radians) over a specified amount of time.

### **Problem Set**

Use the given arc measures to determine the measures of the indicated angles.

1.



$$\widehat{mED} = 140^{\circ}$$

$$\widehat{mCD} = 10^{\circ}$$

$$m\angle EAD = 155^{\circ}$$

$$m\angle CAD = 25^{\circ}$$

Because arc BCD is a semicircle, its measure is 180°.

$$\widehat{mBCD} = \widehat{mBC} + \widehat{mCD}$$

$$180^{\circ} = m\widehat{BC} + 10^{\circ}$$

$$\widehat{mBC} = 170^{\circ}$$

$$m \angle EAD = \frac{1}{2}(m\widehat{ED} + m\widehat{BC})$$

$$m \angle EAD = \frac{1}{2}(140^{\circ} + 170^{\circ})$$

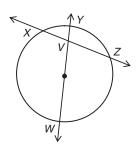
$$m\angle EAD = \frac{1}{2}(310^\circ)$$

$$m\angle EAD = 155^{\circ}$$

$$m \angle CAD = 180^{\circ} - 155^{\circ}$$

$$= 25^{\circ}$$

2.



$$\widehat{mXY} = 20^{\circ}$$

$$\widehat{mYZ} = 50^{\circ}$$

$$m \angle XVY = 75^{\circ}$$

$$m \angle YVZ = 105^{\circ}$$

Because arc YZW is a semicircle, its measure is 180°.

$$m\widehat{YZW} = m\angle\widehat{YZ} + m\angle\widehat{ZW}$$

$$180^{\circ} = 50^{\circ} + m\widehat{ZW}$$

$$\widehat{mZW} = 130^{\circ}$$

$$m \angle XVY = \frac{1}{2}(m\widehat{XY} + m\widehat{ZW})$$

$$m \angle XVY = \frac{1}{2}(20^{\circ} + 130^{\circ})$$

$$m \angle XVY = \frac{1}{2}(150^{\circ})$$

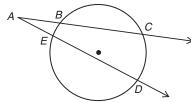
$$m \angle XVY = 75^{\circ}$$

$$m \angle YVZ = 180^{\circ} - 75^{\circ}$$

$$= 105^{\circ}$$

Date

Name



$$\widehat{mBE} = 20^{\circ}$$

$$\widehat{mCD} = 70^{\circ}$$

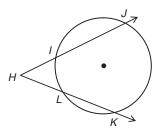
$$m \angle A = \frac{1}{2}(m\widehat{CD} - m\widehat{BE})$$

$$m \angle A = \frac{1}{2} (70^{\circ} - 20^{\circ})$$

$$m \angle A = \frac{1}{2}(50^{\circ})$$

$$m \angle A = 25^{\circ}$$

4.



$$\widehat{mJK} = 164^{\circ}$$

$$m\widehat{IL} = 42^{\circ}$$

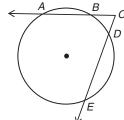
$$m \angle H = \frac{1}{2} (m \widehat{JK} - m \widehat{IL})$$

$$m \angle H = \frac{1}{2}(164^{\circ} - 42^{\circ})$$

$$m \angle H = \frac{1}{2}(122^\circ)$$

$$m \angle H = 61^{\circ}$$

Carnegie Learning



$$\widehat{mAE} = 170^{\circ}$$

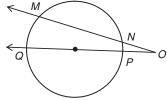
$$\widehat{mBD} = 20^{\circ}$$

$$m \angle C = \frac{1}{2} (m\widehat{AE} - m\widehat{BD})$$

$$m \angle C = \frac{1}{2}(170^{\circ} - 20^{\circ})$$

$$m \angle C = \frac{1}{2}(150^{\circ})$$

$$m \angle C = 75^{\circ}$$



$$\widehat{mMQ} = 50^{\circ}$$

$$\widehat{mNP} = 12^{\circ}$$

$$m \angle O = \frac{1}{2} (m\widehat{MQ} - m\widehat{NP})$$

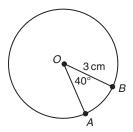
$$m \angle O = \frac{1}{2}(50^{\circ} - 12^{\circ})$$

$$m \angle O = \frac{1}{2}(38^\circ)$$

$$m$$
∠ $0 = 19°$ 

Calculate the area of each sector. Use 3.14 for  $\pi$ . Round to the nearest hundredth, if necessary.

7.



$$A=\frac{40}{360}\pi r^2$$

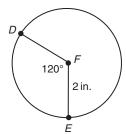
$$A=\frac{1}{9}\pi(3)^2$$

$$A=\frac{1}{9}\pi(9)$$

$$A = \pi$$

 $A \approx 3.14$  square centimeters

8.



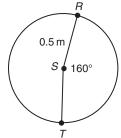
$$A=\frac{120}{360}\pi r^2$$

$$A=\frac{1}{3}\pi(2)^2$$

$$A \approx \frac{1}{3} (3.14)(4)$$

 $A \approx 4.19$  square inches

9.



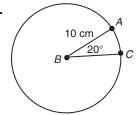
$$A=\frac{160}{360}\pi r^2$$

$$A = \frac{4}{9}\pi(0.5)^2$$

$$A \approx \frac{4}{9} (3.14)(0.25)$$

 $A \approx 0.35$  square meters

10.



$$A=\frac{20}{360}\pi r^2$$

$$A = \frac{1}{18}\pi(10)^2$$

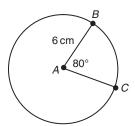
$$A \approx \frac{1}{18} (3.14)(100)$$

 $A \approx 17.44$  square centimeters

Date

11.

Name



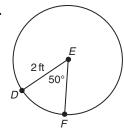
$$A=\frac{80}{360}\pi r^2$$

$$A=\frac{2}{9}\pi(6)^2$$

$$A \approx \frac{2}{9} (3.14)(36)$$

 $A \approx 25.12$  square centimeters

12.



$$A=\frac{50}{360}\pi r^2$$

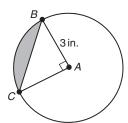
$$A=\frac{5}{36}\pi(2)^2$$

$$A \approx \frac{5}{36}(3.14)(4)$$

 $A \approx 1.74$  square feet

Calculate the area of the shaded segment of the circle.

13.



The area of the shaded segment = the area of sector ABC – the area of triangle ABC.

Area of sector  $ABC = \frac{90}{360}\pi r^2$ 

$$=\frac{1}{4}\pi(3)^2$$

$$\approx \frac{1}{4}(3.14)(9)$$

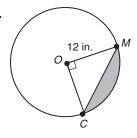
≈ 7.07 square inches

Area of  $\triangle ABC = \frac{1}{2}bh$ 

$$=\frac{1}{2}(3)(3)$$

$$=\frac{9}{2}=4.5$$
 square inches

Area of segment  $\approx 7.07 - 4.5 \approx 2.57$  square inches



The area of the shaded segment = the area of sector MOC - the area of triangle MOC.

Area of sector 
$$MOC = \frac{90}{360} \pi r^2$$
  
=  $\frac{1}{4} \pi (12)^2$   
 $\approx \frac{1}{4} (3.14)(144)$ 

≈ 113.04 square inches

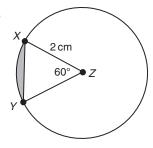
Area of 
$$\triangle MOC = \frac{1}{2}bh$$
  
=  $\frac{1}{2}(12)(12)$   
= 72 square inches

Area of segment  $\approx 113.04 - 72 \approx 41.04$  square inches

Date \_

15.

Name \_



The area of the shaded segment = the area of sector XYZ – the area of triangle XYZ.

Area of sector  $XYZ = \pi r^2$ 

$$=\frac{60}{360}\pi(2)^2$$

$$\approx \frac{1}{6}(3.14)(4)$$

≈ 2.09 square centimeters

 $\triangle XYZ$  is an equilateral triangle, so the base is 2 centimeters and the height is  $\sqrt{3}$  centimeters.

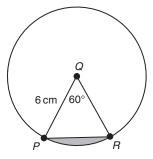
Area of 
$$\triangle XYZ = \frac{1}{2}bh$$

$$=\frac{1}{2}(2)(\sqrt{3})$$

$$=\sqrt{3}\approx 1.73$$
 square centimeters

Area of segment  $\approx 2.09 - 1.73 \approx 0.36$  square centimeters

16.



The area of the shaded segment = the area of sector PQR - the area of triangle PQR.

Area of sector 
$$PQR = \frac{60}{360} \pi r^2$$
  
=  $\frac{60}{360} \pi (6)^2$   
 $\approx \frac{1}{6} (3.14)(36)$ 

≈ 18.84 square centimeters

 $\triangle PQR$  is an equilateral triangle, so the base is 6 centimeters and the height is  $3\sqrt{3}$  centimeters.

Area of 
$$\triangle XYZ = \frac{1}{2}bh$$

$$= \frac{1}{2}(6)(3\sqrt{3})$$

≈ 15.59 square centimeters

Area of segment  $\approx 18.84 - 15.59 \approx 3.25$  square centimeters

Determine each linear or angular velocity.

**17.** Determine the linear velocity if s = 12 cm and t = 2 sec.

$$v = \frac{s}{t}$$
$$= \frac{12 \text{ cm}}{2 \text{ sec}}$$

= 6 cm/sec

**18.** Determine the angular velocity if  $\theta = 12\pi$  and  $t = 5\pi$  seconds.

$$\omega = \frac{\theta}{t}$$
$$= \frac{12\pi}{5\pi}$$

= 2.4 radians/sec

Name \_\_\_\_\_\_ Date \_\_\_\_\_

**19.** Determine the linear velocity if s = 4.2 in. and t = 12 s.

$$v = \frac{s}{t}$$

$$=\frac{4.2 \text{ in.}}{12 \text{ s}}$$

= 0.35 in./sec

**20.** Determine the angular velocity if  $\theta = 9\pi$  and t = 16 seconds.

$$\omega = \frac{\theta}{t}$$

$$=\frac{97}{100}$$

$$= \frac{9}{16} \pi \text{ radians/sec}$$

**21.** Determine the linear velocity if s = 25 ft and t = 120 s.

$$v = \frac{s}{t}$$

$$=\frac{25 \text{ ft}}{120 \text{ s}}$$

$$=\frac{5}{24}$$
 ft/sec

**22.** Determine the angular velocity if  $\theta = \frac{3}{4}\pi$  and  $t = 10\pi$  seconds.

$$\omega = \frac{\theta}{t}$$

$$=\frac{0.75\pi}{10\pi}$$

= 0.075 radians/sec